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RESEARCH OBJECTIVES

The research completed under this AFOSR award was the continuation of

efforts already initiated under Grant AFOSR-84-0004 at Northwestern

University. The research aims at experimental and theoretical investigation

of the micromechanics of flow and failure of rocks, concrete, and other

related geo-materials at moderate to very high pressures and temperatures.

As a result of this work, certain macroscopic nonlinear constitutive models

have been developed, which reflect realistically the micromechanical events

that produce observed macroscopic nonlinear and anisotropic responses of

materials of this kind.

The theoretical work followed the principal investigator's recent

effort in the micromechanical modeling of nonlinear material response. It

included calculations of microcrack initiation under overall compression,

interaction between cracks, development of plastic zones and their

interaction with cracks, and the final failure mode of, say, rocks. In

particular, attention was focused on the influence of the pressure and

temperature on the failure mode and on the transition from brittle to

ductile response. Under the AFOSR-84-0004, the modeling of observed axial

splitting and faulting at moderate pressures and low temperatures was

completed, and through some theoretical and model experiments, a basic

understanding has been gained for the phenomenon of brittle-ductile

transition at elevated pressures.

The experimental effort was carefully coordinated with the theoretical

one. It consisted of two parts: (1) qualitative model studies in order to

identify and understand the involved micromechanics; and (2) quantitative

model tests.
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ORGANIZATION OF THIS REPORT

This report is organized in the following manner.

In Chapter I, we list the papers that have been completed and provide a

brief abstract of each paper. At the end of Chapter I, a list of scientific

articles completed under this project is given. In Chapter I, we also give

the list of participants and related information. Chapters II - IV each

presents a complete research effort which, although finished, has not yet

been published. Since Grant AFOSR-86-0035 actually constitutes the final

year support for a three-year research effort which was started at

Northwestern University under Grant AFOSR-84-0004, this report also includes

a discussion of work completed under Grant AFOSR-84-0004.
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CHAPTER I

RESEARCH ACCOMPLISHMENTS

1. INTRODUCTION

The description of the mechanical response of rocks, concrete, and

other related geo-materials under moderate to very high pressures and

temperatures is of fundamental importance to current and future

technological efforts. Many large-scale computer codes require accurate and

realistic constitutive modeling of materials of this kind. At the same

time, to be useful and effective, these models must be simple. Therefore,

it is of paramount importance first to develop an in-depth understanding of

the essential features responsible for the behavior of this kind of material

in various loading and temperature regimes, and then to seek to formulate

macroscopic constitutive models that embody the most essential

micromechanical features. In this manner, one will have a good chance of

arriving at realistic models of required simplicity.

One main feature of materials at focus here is that they naturally

contain many microdefects and inhomogeneities. These defects and

inhomogeneities serve as stress and strain concentrators, resulting in local

stresses which are, in general, truly three-dimensional and very large, even

when the overall applied load is one-dimensional (uni-axial) and relatively

small. The overall behavior, therefore, is greatly influenced by the

microstructure, and changes as the microstructure is changed in response to

the applied loads.

-3
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The pressure affects the cl. 'nges of the microstructure to a great

extent. At low confining pressures, the existing cracks may open under

tension or may undergo frictional sliding when under overall compression,

with shear stress acting across the plane of the crack. In either case,

tension cracks develop at the tips of the pre-existing flaws, and grow in

the direction parallel to the maximum compression. At higher pressures, the

growth of such tension cracks is soon arrested, but under overall applied

loads, smaller flaws and inhomogeneities that are closely spaced begin to

interact. This leads to a different microscopic response and, therefore,

macroscopic failure. When the pressures are very high, local plastic flow

is the major micromechanics of deformation, and the overall response, though

highly nonlinear and still pressure-sensitive, becomes plastic.

The temperature has a similar effect. At low temperatures the response

Vis more brittle, whereas at high temperatures it is more ductile.

Therefore, macroscopic constitutive modeling must take into account

such varied microscopic behavior patterns. The aim of the research completed

under this grant has been to develop theoretical micromechanical models, to

verify these by quantitative and qualitative model experiments, and then to

seek to develop appropriate macroscopic constitutive relations which embody

the essential microfeatures.

2. PROGRESS

Under Grant AFOSR-84-0004, effort has been concentrated on completing

the microscopic modeling: (1) analyzing the phenomenon of faulting under

moderate confining presures; and (2) understanding the transition from

brittle to ductile failure, under suitably high confining pressures, of

brittle solids containing microdefects such as pre-existing cracks. This

4-
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work was continued under Grant AFOSR-86-0035 at the University of

California, San Diego. Microcracking from voids in an elastic solid was

formulated and solved. In addition, nonlinear constitutive relations

associated with microcracking and damage have been developed. In the

sequel, papers completed and published under both grants, AFOSR-84-0004 and

AFOSR-86-0035, are listed together with their abstracts. In addition,

wherever appropriate, comments are made to point out the significance of the

obtained results.

2.1 Papers Published Under Grant AFOSR-84-0004:

2.1.1 H. Horii and S. Nemat-Nasser, "Elastic Fields of Interacting Inhomo-
geneities," Int. J. Solids Structures, 21 (1985) 731-745.

In this paper a rather effective method has been developed, by which
the interaction between two or among several defects in an elastic

*, solid can be computed on the basis of the solution of a single defect
in an infinitely extended homogeneous solid. The results are funda-
mental and allow us to estimate the failure mechanism in the presence
of large confining pressures where the interaction among neighbo.ing
flaws leads to faulting. The abstract of this paper is as follows.

A rather general technique -- called the "method of pseudotractions"
-- is presented for the calculation of the stress and strain fields
in a linearly elastic homogeneous solid which contains any number of
defects of arbitrary shape. The method is introduced and illustrated
in terms of the problems of elastic solids containing two or several
circular holes and solids containing two or several cracks, including
the cases of rows of holes or cracks. It is shown that the solution
of these and similar problems can be obtained to any desired degree
of accuracy. Furthermore, if only estimates are needed, then the
method is capable of yeilding closed-form analytic expressions for
many interesting cases, e.g. the stress intensity factors at the
crack tips.

2.1.2 H. Horii and S. Nemat-Nasser, "Brittle Failure in Compression:
Splitting, Faulting, and Brittle-Ductile Transition," Philosophical
Transactions of the Royal Society of London 319, No. 1549 (1986)
337-374.

This is a comprehensive paper which we hope will have a lasting
effect on the understanding of the mechanics of brittle failure in
compression and the mechanism of brittle-ductile transition at
elevated pressures. Considerable effort has been required in
preparing and publishing this paper.

-5-
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The micromechanics of brittle failure in compression and the
transition from brittle to ductile failure, observed under increasing
confining pressures, are examined in the light of existing
experimental results and model studies. First, the micromechanics of
axial splitting and faulting is briefly reviewed, certain
mathematical models recently developed for analysing these failure
modes are outlined, and some new, simple closed-form analytic
solutions of crack growth in compression and some new quantitative
model experimental results are presented. Then, a simple two-
dimensional mathematical model is proposed for the analysis of the
brittle-ductile transition process, the corresponding elasticity
boundary-value problem is formulated in terms of singular integral

- .?.~equations, the solution method is given, and numerical results are
obtained and their physical implications are discussed. In addition,
a simple closed-form analytic solution is presented and, by comparing
its results with those of the exact formulation, it is shown that the
analytic estimates are reasonably accurate in the range of the
brittle response of the material. Finally, the results of some

,p. laboratory model experiments are reported in an effort to support the
mathematical models.

.5

In addition, the following papers have been published:

2.1.3 S. Nemat-Nasser and H. Horii, "Micro-mechanics of Fracture and
Failure of Geo-materials in Compression," Proceedings of the ICF 6th
Int. Conf. on Fracture, New Delhi, India, December 4-10, 1984;
Pergamon Press, 1984, Vol. 1-R, pp. 515-524.

Recent analytical results on non-coplanar crack growth in elastic
solids under far-field compressive stresses, are used to examine the
micromechanics of brittle failure in compression. The three distinct
failure modes -- axial splitting, faulting, and the transition from
brittle to ductile response -- observed under axial compression for
different confining pressures, are discussed in terms of simple
plausible micro-mechanical models. The failure strength and the
orientation of failure planes, as well as the stress ratio which
marks the birttle-ductile transition, are estimated and compared with
published data on various rocks, arriving at good correlations. In
addition, certain model experiments which seem to support the
analytical models, are examined.

2.1.4 S. Nemat-Nasser and H. Horii, "Rock Failure in Compression," Int. J.
Engng. Sci., Letters in AppI. and Engrg. Sciences, 1984, Vol. 22, No.
8-10, pp. 999-1011.

Mechanisms of rock failure in compression -- axial splitting and
shear failure -- are studied, based on a microscopic consideration.
Analytical models are constructed and model experiments on plates of
a brittle polymer are performed. It is shown that unstable growth of
tension cracks which propagate from the tips of pre-existing cracks
and curve towards the maximum compressive direction, is the
fundamental mechanism that produces axial splitting of a uniaxially
compressed rock specimen, whereas shear failure of a triaxially
compressed specimen is a result of sudden growth of tension cracks at
tips of a suitably arranged interacting set of microcracks. The

-6-



simultaneous out-of-plane unstable growth of a suitably oriented row
of cracks is analyzed and, on the basis of this model, the variations
of the "ultimate strength" and the orientation of the overall fault
plane with the confining pressure are estimated. The brittle-ductile
transition is discussed with the aid of a model which includes both
tension crack extension and plastic zone development from the pre-
existing cracks.

2.1.5 H. Horii and S. Nemat-Nasser, "Compression-Induced Microcrack Growth
in Brittle Solids: Axial Splitting and Shear Failure," J. Geophys.
Res., 1985, Vol. 90, No. B4, pp. 3105-3125.

Micromechanisms of rock failure (axial splitting and shear failure)
are examined in light of simple mathematical models motivated by
microscopic observations. The elasticity boundary value problem
associated with cracks growing from the tips of a model flaw is
solved. It is shown that under axial compression, tension cracks
nucleate at the tips of the preexisting model flaw, grow with
increasing compression, and become parallel to the direction of the
maximum far-field compression. When a lateral compression also
exists, the crack growth is stable and stops at some finite crack
length. With a small lateral tension, on the other hand, the crack
growth becomes unstable after a certain crack length is attained.
This is considered to be the fundamental mechanism of axial splitting
observed in uniaxially compressed rock specimens. To model the
mechanism of shear failure, a row of suitably oriented model flaws is
considered and the elasticity boundary value problem associated with
the out-of-plane crack growth from the tips of the flaws is solved.
It is shown that for a certain overall orientation of the flaws the
growth of the out-of-plane cracks may become unstable, leading to
possible macroscopic faulting. On the basis of this model the
variations of the "ultimate strength" and the orientation of the
overall fault plane with confining pressure are estimated, and the
results are compared with published experimental data. In addition,
the results of a set of model experiments on plates of Columbia resin
CR39 containing preexisting flaws are reported. These experiments
are specifically designed in order to show the effect of confining
pressure on the crack growth regime. The experiments seem to support
qualitatively the analytical results.

2.1.6 S. Nemat-Nasser and H. Horii, "Mechanics of Brittle Failure in
Compression," Computers & Structures, 1985, Vol. 20, No. 1-3, pp.
235-237.

The mechanics of brittle failure in compression is reviewed in light
of experimental observations and some recent results from
micromechanical modeling. The axial splitting, faulting and the
transition from brittle to ductile response are discussed. It is
concluded that the descending portion of the stress-strain curve
(i.e. the strain-softening), often observed for materials of this
kind, does not represent a continuum response: therefore, many
numerical calculations in the strain-softening range should be viewed
with caution.

-7-
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2.2 Work Completed Under Grant AFOSR-86-0035

Three major papers and a short note were completed, submitted for
publication, and since have been accepted. Two of these papers,
items 2.2.1 and 2.2.2, relate to the failure of porous solids in
compression. The results apply to porous rocks and to ice where
bubbles and cavities are responsible for initiating microcracking
under compressive loads. The third paper, item 2.2.3, is a major
contribution in obtaining overall nonlinear constitutive relations
for brittle solids in compression. The effects of microflaws are
formulated and the corresponding overall response is computed. The
short note is an interesting illustration of the complex overall
material response in the presence of microcracks.

2.2.1 "A Unified Analysis of Various Problems Relating to Circular Holes
with Edge Cracks" Engineering Fracture Mechanics, in press.

A unified method of analysis is developed for various problems
relating to elastic plates containing circular holes with edge
cracks. The method is based on the analysis of a unit rectangular
region containing a circular hole with edge cracks, where the
boundary conditions of the outer edges are suitably adjusted in order
to treat various problems including periodic arrays of holes with
edge cracks. The method is applied to five problems, and accurate
values of the stress intensity factors are obtained. These
analytical values of the stress intensity factors are fitted by
polynomials which are convenient for practical applications.

2.2.2 "On Mechanics of Crack Growth and Its Effects on the Overall Response
of Brittle Porous Solids," Acta Metallurgica, in press.

This paper is concerned with crack growth in brittle porous solids
under compression and its effects on the overall response of the
material. As a mathematical model, we consider an elastic solid
containing a zig-zag array of circular holes with a pair of edge
cracks (two-dimensional problem), and solve this problem by using a
theory which gives numerical results as accurate as desired. Based
on the analytical results, we discuss the crack growth process and
estimate the effective Young's moduli as well as the stress-strain
relation for porous solids. Our computations show that the cracks
emanating from the poles of the circular holes extend in the axial
direction and grow -- in most cases in a stable manner, but for
certain cases in an unstable manner during an intermediate loading
state -- as the overall applied uniaxial compression increases,
reaching a certain limiting maximum length. This maximum crack
length strongly depends on the ratio of the hole radius to the hole
spacing in the loading direction. The effective Young's modulus in
the direction of the crack growth is basically determined by the
initial porosity, and is little affected by the crack length or its
growth regime, i.e., whether stable or unstable. We find that the
overall axial stress-strain curve remains monotonic, exhibiting no
peak stress or strain softening, as cracks extend in the axial
direction and reach their limiting length with increasing axial
stress.

8



2.2.3 "A Microcrack Model of Dilatancy in Brittle Materials," Journal of
Applied Mechanics, in press.

For a solid containing preexisting flaws, overall nonlinear
constitutive relations are developed on the basis of a model which
endows a preexisting flaw with frictional and cohesive resistance,
and which includes nucleation and growth of tension cracks at the
preexisting flaw, as it deforms under the action of an overall
compressive load. The preexisting flaws may be randomly distributed
or may have an initial preferential distribution. They may be of
varying sizes and orientations. Even when the flaws are randomly
distributed, their preferential activation, and the nucleation and
growth of tension cracks at preferential flaws, render the overall
response of the solid highly anisotropic. As a first step toward a
more complete constitutive micromechanical modeling, a dilute
distribution of preexisting flaws is assumed, rate constitutive
relations are developed for loading and unloading, which include
hysteresis, dilatancy, and other characteristics observed
experimentally in rocks, ceramics, concrete, and similar brittle
materials. A number of illustrative examples are worked out, and
the results are compared to relevant experimental observations.

The following papers were revised as required during the review
process, considerably improved and expanded, and the final manuscripts were
submitted for publication:

B. Rowshandel and S. Nemat-Nasser, "Finite Strain Rock Plasticity:
Stress Triaxiality, Pressure, and Temperature Effects," Soil
Dynamics and Earthquake Engineering, in press.

B. Rowshandel and S. Nemat-Nasser, "A Mechanical Model for
Deformation and Earthquake on Strike-Slip Faults," Pure and
Applied Geophysics 124, No. 3 (1986) 532-566.

i 9-
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3. LIST OF PUBLICATIONS COMPLETED

H. Horii and S. Nemat-Nasser, "Elastic Fields of Inhomogeneities," Int.
J. Solids Structures, 21 (1985) 731-745.

H. Horii and S. Nemat-Nasser, "Brittle Failure in Compression:
Splitting, Faulting, and Brittle-Ductile Transition," Philosophical
Transactions of the Royal Society of London 319, No. 1549 (1986)
337-374. (Considerable effort has been devoted to completing this
manuscript, which is a rather comprehensive account of our work
supported by AFOSR).

S. Nemat-Nasser and H. Horii, "Micromechanics of Fracture and Failure
of Geomaterials in Compression," Proceedings of the ICF 6th Int.
Conf. on Fracture, New Delhi, India, December 4-10, 1984: Pergamon
Press, 1984, Vol. I-R, pp. 515-524.

S. Nemat-Nasser and H. Horii, "Rock Failure in Compression," Int. J.
Engrg. Sci., Letters in Appl. and Engrg. Sciences, 1984, Vol. 22,
No. 8-10, pp. 999-1011.

H. Horii and S. Nemat-Nasser, "Compression-Induced Micro-Crack Growth
in Brittle Solids: Axial Splitting and Shear Failure," J. Geophys.
Res., 1985, Vol. 90, No. B4, pp. 3105-3125.

S. Nemat-Nasser and H. Horii, "Mechanics of Brittle Failure in

Compression," Computers & Structures, 1985, Vol. 20, No. 1-3, pp.
235-237.

M. Isida and S. Nemat-Nasser, "A Unified Analysis of Various Problems
Relating to Circular Holes with Edge Cracks," Engineering Fracture
Mechanics, in press.

M. Isida and S. Nemat-Nasser, "On Mechanics of Crack Growth and Its
Effects on the Overall Response of Brittle Porous Solids," Acta
Metallurgica, in press.

S. Nemat Nasser and M. Obata, "A Microcrack Model of Dilatancy in
Brittle Materials," Journal of Applied Mechanics, in press.
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4. PROFESSIONAL PERSONNEL ASSOCIATED WITH THE RESEARCH EFFORT; DEGREES
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Principal Investigator: S. Nemat Nasser

Postdoctoral Research Associates and Visiting Scholars:

MAKOTO ISHIDA, Visiting Professor, (Kyushu University, Fukuoka, and
Kurume Institute of Technology, Kurume, Japan)

MAKOTO OBATA, (Postdoctoral Research Associate, Department of Applied
Mechanics and Engineering Sciences, University of California, San
Diego, La Jolla, California)

BENJAMIN LORET (Research Associate, Ecole Polytechnique, Palaiseau,
France)

MORTEZA M. MEHRABADI (Associate Professor, Department of Mechanical
Engineering, Tulane University, New Orleans, Louisiana)

DONG-TEAK CHUNG (Postdoctoral Research Associate, Department of
Applied Mechanics and Engineering Sciences, University of
California, San Diego, La Jolla, California)
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H. HORII, Ph.D., Northwestern University
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JAE-YOUN CHANG, M.S., Northwestern University

Other Graduate Students (Partially supported)

JAE-YOUN CHANG
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Other Researchers Who Have Been Involved in the Project:

JOHN E. STARRETT, Principal Development Engineer
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5. INTERACTIONS (COUPLING ACTIVITIES)

A. Participation of Principal Investigator at Meetings -- Papers
Presented; Lectures at Seminars (Under AFOSR-86-0035 only)

"Generalization of the Mandel-Spencer Double Slip Model," International
Symposium on Physical Basis and Modeling of Finite Deformation of
Aggregates, Paris, France, September 30-October 2, 1985.

"Failure in Compression," Ecole Polytechnique, Palaiseau, France,
September 30-October 2, 1985.

"Failure in Compression," University of California, Santa Barbara,
March 3, 1986.

"Micromechanically Based Constitutive Modeling of Inelastic Response of
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CHAPTER II

A UNIFIED ANALYSIS OF VARIOUS PROBLEMS RELATING TO

CIRCULAR HOLES WITH EDGE CRACKS

M. Isida* and S. Nemat-Nasser

Department of Applied Mechanics and Engineering Sciences

University of California, San Diego, La Jolla, CA 92093

Abstract

A unified method of analysis is developed for various problems

relating to elastic plates containing circular holes with edge cracks. The

method is based on the analysis of a unit rectangular region containing a

circular hole with edge cracks, where the boundary conditions of the outer

edges are suitably adjusted in order to treat various problems including

periodic arrays of holes with edge cracks. The method is applied to five

problems, and accurate values of the stress intensity factors are obtained.

These analytical values of the stress intensity factors are fitted by

polynomials which are convenient for practical applications.

* Present address: Department of Mechaical Engineering, Kurume Institute

of Technology, 2228 Mukuno Kamitsumachi, Kurume 830, Japan.
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NOMENCLATURE

x, y Cartesian coordinates

z complex coordinate - x + iy

2b, 2c length and width of rectangular region

aspect ratio of rectangular region - S
b

a hole radius

normalized hole radius -
c

Icrack length

L normalized crack length a_% a

crack length parameter - (I+L)-

E Young's modulus of material

v Poisson's ratio of material

- -v (plane stress), - 3 -4v (plane strain)

G shear modulus - E
2(l+v)

axP a y, xy stress components in Cartesian coordinates

a0  reference stress

all a2  principal stresses at infinity
a 2

A ratio of principal stresses at infinity- (a 0)
U1

_ P P resultant force components in Cartesian coordinates

u, v displacement components in Cartesian coordinates

O(z), O(z) complex stress potentials

W1(z), 1 (z) complex stress potentials in Laurent expansion

Pm (siM) densities of distributed force doublets

qm(s m) weighting functions of force doublet densities

- 16 -
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M subdivision number of crack

N1  subdivision number of side EF

N2  subdivision number of side FG

h length of intervals on side EF

h 2  length of intervals on side FG

KI  Mode I stress intensity factor

K I
FI dimensionless stress intensity factor -

F adimensionless stress intensity factor - K1I
a a0 (7ra)

K I critical stress intensity factor
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1. INTRODUCTION

Since the pioneering work of Griffith [1], it has heen commonly

accepted that brittle failure is often caused by the formation and growth of

tension cracks which usually nucleate at micro-defects such as preexisting

cracks, voids, and other micro-heterogeneities. Recent analytical and

experimental work [2-11] has clearly shown that, even under overall

compressive farfield loads, brittle failure is usually a result of

nucleation and growth of micro-tension cracks. An important class of

micro-defects which may be a source of crack nucleation, is micro-cavities

which are commonly present in most solids such as rocks, ceramics, metals,

bones, etc. To be able to examine the physical consequences of strength

degradation by crack nucleation and growth at preexisting cavities, one

requires a solution of the problem of crack growth from the walls of

cavities under prescribed farfield stresses. In the two-dimensional case,

the elasticity problem of cracks extending from the edges of a circular hole

has been solved by Bowie [12] for an infinitely extended medium. The more

general problem of cracks emanating from an elliptical hole in a plane has

been treated by several authors [13-16] where some of the results have been

put in a form convenient for design purposes [17,18].

In this paper we consider a class of elasticity problems relating to

circular holes with edge-cracks, and solve these problems by a unified

method. This method is such that the results can be rendered as accurate as

desired. The basic problem is formulated for a rectangular region

*containing a circular hole with two edge-cracks emanating from the hole.

Various cases are then studied by adjusting the boundary conditions on the

outer boundaries of the rectangular region. In this manner, solutions are

-18-
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obtained for a finite region, for a strip containing an array of holes with

edge-cracks, and for a sheet containing doubly-periodic holes and edge-

cracks. These results are fitted by polynomials which are convenient for

practical applications.

1
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2. THEORETICAL ANALYSIS

2.1 Description of the problem

Consider a rectangular region containing a central circular hole and a

pair of equal cracks, emanating from the hole in the x-direction; see

Fig.l-l for notation and definition of various geometric quantities. A

variety of problems including periodic arrays of holes with edge cracks can

be analysed by adjusting the boundary conditions of this rectangular region.

We consider a class of problems for which the boundary conditions are

symmetric about both coordinate axes. We solve this class of problems using

suitably symmetric stress potentials defined on the first quadrant, OEFGO in

Fig.l-l, and by enforcing the desired boundary conditions.

This paper deals with the following five problems:

(1) Uniform normal loads along EF and along FG, (Fig.l-l).

(2) Infinite strip in the x-direction with a periodic array of holes

and edge cracks aligned in the x-direction. This case cor-esponds to

a rectangular specimen subjected to uniform displacement u without

shear along EF, (Fig.l-2).

(3) Infinite strip in the y-direction with a periodic array of holes

and edge cracks aligned in the x-direction. This case corresponds to

,N a rectangular specimen subjected to uniform displacement v without

shear along FG, (Fig.l-3).

(4) Infinite solid with doubly periodic array of holes and edge cracks,

(Fig.l-4).

(5) Infinite solid with zig-zag periodic array of holes and edge

cracks, (Fig.l-5).

- 20 -



The conditions on the outer edges depend on the problem, and are

summarized in Table 1. In this table, u and v are the components of the

displacement, P and P are those of the resultant force transmitted acrossx y

an arbitrary path from a fixed point (x0 , yO) to a typical point (x, y) ,

and 0 I and a 2 are the applied stresses in the x- and y-directions,

respectively. The cracks are assumed to be traction-free for all the

treated problems. Hence, the results are valid for combinations of a1 and

a2 that satisfy this assumption.

2.2. Basic relations

In plane problems of elasticity, components of the stress, the

displacement and the resultant force with respect to the Cartesian

coordinates are expressed in terms of two complex potentials, O(z) and O(z),

and their derivatives, as follows:

y 2 . - 2 Re['(z)]
' %1 2

a - 0
y2x+ ir -y i () z~2 xy

2G (u- iv) - c(E) -i'(z) -0'(z) (2)

P + iP -Z() - z''(z) -0'(z) (3),; . y x

where G is the shear modulus, and x is defined in terms of Poisson's ratio,

v, as follows:

(plane stress), - 3- 4v (plane strain) (4)

The analysis is performed by superposing two stress states. The first
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one is introduced in order to satisfy the outer boundary conditions, and is

represented by the complex potentials 1l(z) and p1 (z) having singularities

within the hole. The second stress state is properly singular at crack

tips, and is realized by distributing suitable force doublets along the

cracks.

The above two stress states are established in such a manner that they

automatically satisfy the traction-free conditions at the hole. These

stress states include unknown parameters which are then determined from the

boundary conditions on the cracks and the outer edges of the rectangular

region.

2.3. Displacement and resultant force due to 1 (z) and 01 (z)

The complex potentials 1 (z) and Oi(z) for the first stress state are

expressed as the following Laurent series:

N-1 -(2n+l) 2n+l
01(Z- n0[ F2nZ +M2n Z

(5)
N-1 -(2n+l) 2n+l

Oj(z) nZO[D2nZ +K2nZ

The coefficients F2n' M2n, D2n and K2n (n - 0,1,2,---,N-l) are real due to

the symmetry of the problem. N is to be fixed at the stage of the boundary

collocation procedure, as discussed in Section 2.5.

The traction-free conditions at the hole require that

D - -2M0 a
2

- ,D -- 4n -4n+2
D2n- -(2n-l) K 2 2 a (2n)2 M 2 a (l~n_<N-1) (6)

,4n+2 4n+4 (~.Nl2n 2 +2n
F 2n - K K2n a 4n-2(2n+3) M 2n+2 a 4(0!nN-1)
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Substituting Eqns. (6) into Eqns. (5), the complex potentials for the

first stress state are obtained as follows:

0~~ 1 (Z M2 z2n+l_ 2 4n Z-(2n-1) )K2 4n+2 Z- (n

2 M- I nOMN-1 (2n+la 4n+ ) (2n +3) ~ )

Oz)- -2M0 a -l + n Z0[ 2n z (2n1)a 4n4- 2+) (7)

-M 2n(2n)2 2
4n+2 Z- (2n+i)1

The boundary conditions of the present problems have been given in

Table 1 in terms of stress and displacement components. But in the

analysis, the stress conditions are replaced by those of the resultant force

in order to increase the accuracy of the numerical results [19,20].

Using Eqns.(7) in Eqns.(2) and (3), we have the following expressions

for the displacement and the resultant force components:

-l1 N-i 2n+l -2n

2G(u- iv) (1) - M 0 (2a
2z +(,c-l)i)+ nE IM 2 [#Cc -(2n+l)z

+( 2 l)a4n(,(2n1l)( 2 l-)i 2n ) +(2n)2 a 4n+2 Z-(2n+l)

N-1 2n+l 4n+2 -(2n+l) -(2n+2)
+ n Z0 K 2n[-Z -a (OCZ +(2n+l)'Zz

+(2n+l)a 4n+4z Z-(2n+3)1  (8.1)

(P + iP ) M 2-- 2 Y + N E12 -i 2n+l_ 2~)i 2n

y (1 0 2z -~+n-I Mn~ (nl

4+( 2n+l)a 
4n (i (2n-l- )(2n-l)"iz 2n ) +(2n)2 a 4n 2 Z-(2n+l)

+ NZ K -Z2n+l +a4n+2 (- (2t~) (+l)z (2n+2)~

n-0 2n

+(2n+l)a 4n+4 Z-(2n+3)1  (8.2)
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The above expressions include 2N unknown coefficients M2. and K2n

(n-0,l,2,---,N-l) to be determined from the boundary conditions.

2.4. Displacement and resultant force due to force doublets

The second stress state is realized by distributing force doublets of

arbitrary density on the cracks. The force doublets are established from

stress states for concentrated forces acting in an infinite solid which

contains a circular hole, and, therefore, the traction-free conditions at

the hole edge are satisfied automatically. Expressions for the displacement

and the resultant force components due to distributed force doublets have

been derived by Isida and Noguchi [211, and are as follows:

2 .12

2G (u- iv)( 2 ) 2+ K/2l +(2 - ,Z J Pm(Sm) M- Mm_ Sml Sf_
m- -1/2

+ 1 + " 2 1 2 w );(WW2) a2  1
m (Sm'W2) 2  (SmW2)2  2 (SW 2 )3

a 2  1
+ 2 ( r. z + a ]2z (sm+w3)2 (9.1)

2 /2 iP +i sI + -WlWl

M f m m) -SmWl SmWl (SmWl) 2

m-i -1/2

+w w-w )w_ 2+ 1 w2 + 1 w 2 a 2  1

SmW Sm. 2--- + +sw2  
2  -2(WW2)( 1-W2) z

2  m

' a 2  I+ 2 ( - z a2  1 (9.2),,. (Sm+W3))

where pm(sm) (m- 1,2) are unknown density functions of the force doublets,
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and the subscript m takes I for the right and 2 for the left crack,

respectively; the following notation is also used (see Fig. 2):

a
2

w I - z - x0,m , '2  - xO w3

X - a+ (m-l) (10)

x - I-a- (m-2)

The density functions pm(sm) in Eqns. (9) are expressed as [22]

Pr(si ) -q(s 2S

where the weighting functions q m(s ) are regular.

Eqn. (11) actually defines force doublet densities with singularities

at both ends, s -±1/2. It applies to the present problem, provided the

resultant force conditions (instead of stress conditions) are used, as can

be seen by the accurate results obtained even with small number of of

subdivisions shown in Tables 2 to 4 of Section 3.2.

It is obvious from symmetry that

q2 (-s2) - ql(s1 ) (12)

Thus ql(sl) is the only unknown function in the second stress state.

2.5. Boundary conditions based on resultant force and displacement

A piecewise linear approximation will be used to estimate the unknown

weighting function ql(sl). For the right crack, this is shown in Fig. 3,

where equally spaced intervals are used. Eqns. (9.1) and (9.2) now reduce

to linear expressions in f (j - 1,2,---,M) which are the values of the

weighting function at the ends of these intervals.
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We now have 2N unknown coefficients in the first stress state and M

unknown weights, fJ, in the second stress state to be determined from the

boundary conditions. Since both stress states satisfy the traction-free

conditions on the hole, we have only to consider the boundary conditions on

the crack and at the outer edges of the first quadrant. These conditions

are satisfied by means of a boundary collocation procedure based on the

displacements and the resultant forces. In the numerical computations, the

traction-free conditions of the cracks are replaced by M relations, and

those of the outer edges by 2N relations.

The traction-free conditions on the cracks are common to all considered

problems. In order to obtain M relations from the traction-free conditions

on crack A1 B1 (stated in terms of resultant force components P y), we divide

this crack into M unequal intervals, DID2, D2D3 ,--- DMDM+l, where D2, D3,--

-, DM are the mid-points of previously defined equal intervals (Fig.3).

Then the traction-free conditions are:

Along crack A B : [PI]Dk - 0 (k - 1,2,---,M) (13)

To impose the boundary conditions at the outer edges, EF and FG are

divided into N1 and N2 equal intervals, respectively, as shown in Fig. 4.

The corresponding interval lengths then are

h - RI' h - b (14)
1 N 2 N 2

The integer N in Eqn. (8) is chosen such that

N - N1 + N2  (15)

Now the boundary conditions for all five problems given in Table 1 are

replaced by the following relations in term of the resultant force and the
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displacement components:

Problem (1)

-S k+l- S k+1
Along EF [P 5 I k a hit [P yIS k 0 (k-12,-N)

(16)

Aln FG1 [P 1SklAlog F [PxIS k - 0, [ yIS k a o2 h 2 (k N IN1 2--N

Problem (2)

S S5 k~lF k+l
Along EF [u] Sk5  - 0, [P 1 E- a 1 C, [P 1 IS 0 (k - 1,2,---,N 1)

k xEYk'

Alog G p k+1 Sk+l hN+1N2- )Alog (PXIS k - 0,[PyIS k - a02 h2 (k- 1 11+2- ,N

(17)

Problem (3)

k+ 1l 
+1 0(Along EF [P XI k a hip [Pc 0S (k 1)

k+l k+lG

Along FG [PxS 1 0, [V]~ - 0, [P a - b b k-N+, 2--N
xSkSk y F 2 (k 1 N+N 1+2--

(18)

Problem (4)

AlongS i k+l~ ,[ 1F S ~ P k+l-. 0 (k-12--N)Aln F []Sk 0 [PXIE- 1 o PYIS k '1)
k+l k+l -G

Aog[PxIS k 0, ]Sk 0 [Py IF a2 b (k - N1 +1,N 1 +2,---,N)

(19)
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Problem (5)

For convenience, N 2 is taken to be an even integer, say 2N3, and the

following relations (20.1) and (20.2) are used

Along EF [u] kl 0, [P isk - 0 (k - 12--N1

Aln ~ k+l P 4 +k S k+l -[P +I-
A l ng FG [ Py S - I SN -k I p X Sk - P SN 4- k

S S 4 S S 4
1]Sk+l - usN4+1-k IVSk+l -(ISN4+1-k

k N4- k k N4- k

N -N /,N 4-2N 1+ N2+1 (k-N +lN I+2,---,NI+N3

(20.1)

For the total forces:

[P1 I- [PI -2a c [P I ab(20.2)x E xC 1
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3. NUMERICAL ANALYSIS

3.1. Dimensionless stress intensity factors

The unknown quantities K2n, M2n (n- 0,1,2,---,N-1) and f (j -1,2,--

-,M) are determined by solving the simultaneous relations consisting of

Eqns. (13) and one of Eqns.(16) to (20) depending on the considered problem.

The stress intensity factor at the crack tip is then calculated by

K - (21)
I M 2

We consider the following two cases of uniaxial loading:

(a) Compression in the x-direction : 1I - -a0, a 2 - 0

(b) Tension in the y-direction : 1I - 0, a 2 - a0

where a 0 is a positive reference stress.

Calculations have been performed for all possible combinations of the

following values of the geometric parameters: b/c - 2, 1.75, 1.5, 1.25, 1,

1/1.25, 1/1.5, 1/1,75, 1/2; c/a - 5, 6, 7, 8, 9, 10; L/a - 0.5, 1., 1.5,

2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0.

The numerical results are summarized in terms of two dimensionless

stress intensity factors: one is based on the hole radius; and the other is

based on the crack length. These dimensionless stress intensity factors

are:

K (ix) K (ix)

F (i,x) - -I F(i,x) I aI a9a 2a
a a(fa) ( -a, a2 0 ) (22a)

K (i~y)K (i,y)

F(iy) - I y )  F(i'y) I a-0a -
a0a(), a 0 (ra) ( 1 2 C0 ) (22b)

( i-1, 2, 3, 4, 5)
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Here, superscript i denotes the problem number, and superscript x or y

designates the loading direction.

As a/c tends to zero, the quantities in Eqns. (22) for all five

problems should converge to the results for an infinite solid containing a

hole with edge cracks. The results for this limiting problem are also given

in terms of the following dimensionless stress intensity factors:

K(x) K(x)

F(x) 1I0 F(x) 10 a -0 (23a)
'1,0 a ' a,0 (a) (a1  2

K(Y) K(Y)

S10 - '0 (a I - 0 , a-a) (23b)
',0 a 0(ir) ' a,0 a0 (ira) 1  2 0

K 1t0  KI,

F .2, K ,' F - . a ~ a2- Xa)1 (23c)
2,0 -a 0() ,Fa,0 a0 (a)4 (al - -0, 2 1

where subscript x or y designates the loading direction, and F1, 0  and F 0a,

denote the values for biaxial loadings.

3.2. Accuracy of numerical results

The accuracy of the numerical results would be improved by increasing

subdivision numbers M, N1 and N2. It is however desirable to use minimum

*values for these quantities, which still provide needed accuracy.

Reasonable values of M have been determined from test calculations of

an infinite solid. Table 2 gives typical results for 2/a-0.4. As is

seen, any M larger than 3 seems to give reliable values with errors less

than one per cent. Calculations also have been done for several finite

regions. Based on this information, M is taken to be 7 to 10 depending on

the region geometry.
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Other series of test calculations also have been done to determine

reasonable values for NI and N Tables 3 and 4 give the values of

F(ix) and F(i y ) for various values of N (-N2) where b-c a/c-02a a 1 '2' e

I/a- 2 and M- 6. The convergence is excellent, and N., N2 larger than 4

are likely to give reliable values with errors less than one per cent. On

the basis of the above and similar results for other configurations, N 1 and

N2 are chosen to be 5 to 10 depending on the geometry.

Thus the number of unknowns to be determined from the boundary

conditions is confined to less than 50 with good accuracy.
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A4. NUMERICAL RESULTS AND DISCUSSION

4.1. Infinite solid with a hole and cracks

Reliable solutions are available for an infinite solid containing a

hole with edge cracks. However, we have reanalysed this problem because of

its importance as a common limiting case for all other considered problems.

The results also give useful information on the accuracy of the basic

method, and help to fix the value of M to be used for each problem.

The numerical values of F(x) and (Y) are fitted by the following
1,0 2,0

five-term polynomials for the range 0 < I/a : 7:

(a) Compression in the x-direction

F (x) - 0.0177 - 0.2329P + 1.0065p2 - 1.0751p3 + 1.4032fi4 p - +1 )
1,0 1+2/a

(24a)

(b) Tension in the y-direction

F(Y) - 1.0377 + 0.0061p + 2.5633p2 - 3.0360f 3 + 2.7814p4 (6 - I
.1,0 1+1/a

(24b)

(c) Biaxial loading

The results for biaxial loading are obtained by the linear combination

of Eqns. (24a) and (24b) as follows:

K - (nI)4 a F (x) + a 2 F(Y) a- -al(7r) F, 0 -F al(a) FKI,0 1 (1)0 2 1- 1i O -- 2,0 1a,O

(24c)

F ~ (x) (Y) F -F (/ -1,0 1,0 1,0 ' a,0 1 /Fa),A a21 (a 1al/

The numerical values from Eqns. (24) based on the present analysis are
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in excellent agreement with previous reliable values [17] shown in Table 5.

F1, 0 is usually convenient in theoretical considerations, but in

analysing the test results, F a, would be more useful since it is normalized

by the hole radius which remains unchanged during crack extension.

4.2. Polynomial expressions of stress intensity factor

For applications, it is desirable to represent the numerical results by

simple analytical expressions. We consider polynomial expressions in terms

of the following dimensionless geometric parameters:

a 1 -c I
-+6 (L - -- ) (25)

Our computations show that the polynomial expressions must be such that

the following conditions are satisfied:

(i) As a/c - 0, the results for all five problems converge to those

for an infinite solid, independent of the values of b/c.

(ii) Better accuracy is obtained by fitting polynomials to FI than to

F.
a

(iii) For the tension applied in the y-direction (case (b)), the stress

intensity factor becomes unbounded as a + I -b.

The numerical values of F and F~i 'y ) for problems (1) to (5) are

fitted by polynomials of the three parameters defined by Eqns. (25). The

Vresults are summarized as follows:

(a) Compression in the x-direction ( a- -a0  2 - 0 )

Case when b c

F (i,x) . F(x) + X (i '  p q s  (26a.1)I 1,0 p-1 q0 s- pqs
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Case when b : c

F (ix) -(x) +p 2)qO sO pqs
21 ,0 px1i'2) Ipq qs(2a2

(b) Tension in the y-direction I - O, a- a)

a", Case when b c

F(i,y) - + / (1- +1 ) (26b.1)I p- qO s pqs(6b

Case when b : c

F(i,y) - F()+ Y y(2i 2) a p0q.s a+I )I (26b.2)1 1,0 p Y0is0pqs s / (  - b

(c) Biaxial loading

The stress intensity factor for the biaxial loading is given by a

linear combination of Eqns. (26a.1) to (26b.2) as follows:

KM- (WI) a (- x) + a 2Fi'Y ) (26c)

Note that Xpqs and Ypqs for p- 0 are not included in Eqns. (26a.1)
to (26b.2) in order to ensure that F (i,x) and iy)

an infinite solid as a-a/c- 0. Furthermore, Eqns. (26b.1) and (26b.2)

are formulated in such a manner that the stress intensity factor becomes

unbounded as a+I- b.

Eqns. (26) yield the dimensionless stress intensity factor F To

obtain F from these equations, we use the expressiona

F - F2 ( ) (27)

The coefficients in the polynomials (26a.1) to (26b.2) for problems (1)
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to (5) are given in Tables 6 to 10, respectively.

The numerical values from these expressions are compared with those

from direct analysis in Figs. 5 to 9-2, for typical cac, .3 of the five

treated problems. The agreement is quite good, and the proposed polynomials

(26) are useful in applications.
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5. SUMKARY AND CONCLUSIONS

A unified method of analysis for various problems relating to elastic

plates containing circular holes with edge cracks is developed. The method

is based on the analysis of a unit rectangular region containing a circular

hole with edge cracks, where the boundary conditions of the outer edges are

suitably adjusted in order to treat various problems including periodic

arrays of holes with edge cracks.

The method is applied to five important problems, and accurate values

of the stress intensity factors are obtained. These values are fitted by

polynomials which are convenient for practical applications.
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Figure captions

Fig. 1-1 Uniform normal loads along sides EF and FG.

Fig. 1-2 Strip with a periodic array of holes and cracks in the

x-direction.

Fig. 1-3 Strip with a periodic array of holes and cracks in the

y-direction.

Fig. 1-4 Infinite solid with doubly periodic array of holes and cracks.

Fig. 1-5 Infinite solid with zig-zag periodic array of holes and cracks.

Fig. 2 Geometry of a circular hole with edge cracks.

Fig. 3 Subdivision of crack for numerical evaluation of weighting

function.

Fig. 4 Subdivision of outer edges for numerical evaluation.

Fig. 5 F(lx) for Problem (1), b/c- 2.
a

* Fig. 6 F(2 ,x) for Problem (2), b/c- 2.
a

Fig. 7 F(3 ,y) for Problem (3), b/c- .
a

Fig. 8-1 F(4 ,x) for Problem (4), b/c- 1.
a

Fig. 8-2 F(4 ,y) for Problem (4), b/c- .
a

Fig. 9-1 F(5,x) for Problem (5), b/c-2.
a

Fig. 9-2 F( 5 ,y) for Problem (5), b/c-2.
a
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Table 1 Boundary conditions of outer edges

Problem Side iF Side G

xy xy

u- const. ai a-

(2) [P1F -c a T -0
x E I xy

xy

'x a 1 v -const.

(3) 0 - [P] Gxy y F 2

* =0xy

u const. v- const.

(4) [p F - a c [P a b
x E I y F -2

7xy 0  0

u -const. (a ) x -(a y)b-

[P F [P] H 2a c (Tr )x (T )x E xO 1 xyx xy b-x

(5) Tx 0 [u) = (u] b

0 b-

y F 2
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Table 2 Variation of F xand F(Y with various M
1,0 2,0

for I/a -0.4

M ,X F(x)
______ 2,0 1,0

2 0.332 1.949
3 0.334 1.955
4 0.337 1.964
5 0.338 1.968
6 0.339 1.969
7 0.339 1.969
8 0.340 1.974
9 0.339 1.969

10 0.339 1.972
11 0.339 1.973
12 0.339 1.971
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Table 3 Variation of F ' for the case when
a

b/c-i, a/c-0.2, I/a-2, M-6

N N i-i' - 13 i- -
1' 2i2 i- 4i-

2 0.2426 0.0425 0.0733 0.0142
3 0.2001 0.0528 0.0795 0.0185
4 0.2156 0.0514 0.0793 0.0182 0.0346
5 0.2110 0.0517 0.0797 0.0182
6 I0.2130 0.0516 0.0795 10.0182 0.0345

7 0.2120 0.0516 1 0.0796 0.0182
8 0.2125 0.0516 0.0795 10.0182 0.0345
9 0.,2120 0.0516 0.-0796 0.0182

10 0.2119 0.0517 0.0795 1008
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Table 4 Variation of F '~y for the case when

NiN N i-i 1-2 i-3 i-4 i-5

2 2.490 2.191 2.265 2.070
3 2.781 I2.239 2.292 2 2.075

4 2.863 2.233 2.294 2.077 2.148
5 2.829 2.236 2.298 2.077
6 2.848 2.234 2.295 I2.077 2.146
7 2.837 2.235 2.297 1 2.077
8 2.843 2.235 2.296 2.077 2.146

9 2.838 2.235 2.297 2.077
10 2.39 2.235 2.296 2.077
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Table 5 Comparison of F 10from Eqns. (24) and previous analysis.

(infinite solid)

A 0 -0.1 A 0.2

L Eqn.(24a) Ref.[l71 Eqns.(24) Ref.17l Eqns.(24) Ref.[171

0.01 1.079 1.074 0.750 0.747 0.422 0.420
0.02 1.040 1.041 0.718 0.718 0.397 i0.396

0.04 0.968 0.968 0.659 0.658 0.350 0.348
0.06 0.903 0.902 0.605 0.603 0.307 0.305
0.08 0.843 0.842 0.555 0.554 0.268 0.266
0.10 0.788 0.788 0.510 0.509 10.232 0.231

)0.15 0.672 0.671 0.414 0.413 0.156 0.155
0.20 0.577 0.577 0.336 0.336 0.096 0.095

N0.25 0.500 0.500 0.273 0.273 0.046 0.046

0.30 0.436 0.437 0.221 0.22-1 0.006 0.006
0.40 0.338 0.339 0.142 0.142 -0.055 -0.055
0.50 0.268 i0.269 0.085 0.086
0.60 0.217 0.217 0.044 0.044
0.80 0.148 10.147 -0.011 0010
1.00 0.106 0.105
1.20 0.079 i0.077

1.50 0.053 0.051
2.00 0.029 0.029
3.00 0.011 0.011
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Table 6 Coefficients of polynomials (26.1) to (26.2)

for Problem (1) (X 3q'Y -s0)

p q s x (Iil) x (1,2) Y (l'l) Y (1,2)

1 0 0 -7.4715E-01 -2.4215E+00 5.7012E--00 2.2056E+01
1 0 1 2.3737E+00 3.8558E+00 2.6320E+01 -4.3445E+01
1 0 2 -5.3173E-01 -1.4332E+00 -2.5258E+i01 1.9673E+01
1 0 3 0.0000E+00 0.OOOOE+00 0.0000E+00 0.OOOOE+00
1 1 0 -1.9973E+00 1.8117E+i00 -1.2146E+02 -5.6748E+01
1 1 1 -6.1593E+00 -2.0771E+.00 -5.4035E+01 1.2814E+02
1 1 2 3.2767E+00 6.2703E-01 1.3601E+.02 -5.8552E+01O
1 1 3 0.OOOOE+00 0.OOOOE+00 0.OOOOE+00 0.OOOOE+00
1 2 0 2.4177E+01 0.0000E+00 3.5453E+02 -1.5351E+02
1 2 1 -1.7526E+01 0.QOOOE.-O 5.5240E+01 1.9721E+02
1 2 2 -2.9660E+00 0.0000E+00 -3.6728E+02 -8.9138E+01
1 2 3 0.OOOOE+00 I .OOOOE+00 0.0000E+00 0.0000E+00
1 3 0 -2.0392E+01 0.0000E+00 -1.6091E+02 2.7113E+i02
1 3 1 6.2492E+00 I .OOOOE+00 -3.0702E+02 -4.1494E+02
1 3 2 1.7132E+01 0.OOOOE+00 4.7679E+02 1.9012E+02
1 3 3 0.0000E+00 0.0000E+00 0.OOOOE+00 0.OOOOE+00
2 0 0 4.5632E+00 3.3112E+01 5.5254E+01 -1.2963E+02
2 0 1 j-2.5129E+00 -5.0744E+01 -1.8464E+02 2.8193E+02
2 0 2 -1.4135E+01 1.8632E+01 2.9894E+01 -1.6561E+02
2 0 3 0.OOOOE+00 0,OOOOE+00 0.0000E+00 0.0000E+00
2 1 0 -5.0766E+00 -2.6862E+01O 4.3826E+02 8.1074E+02
2 1 1 4.0657E+01 4.4293E+01 -1.0866E+02 -1.5208E+03
2 1 2 5.2748E+01 -1.3934E+01 3.7345E+02 8.1247E+02
2 1 3 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
2 2 0 -1.1439E+02 0.0000E.00 -2.3193E+03 -5.1824E+02
2 2 1 8.4083E+01 0.OOOOE+00 2.5729E+03 8.2030E+02
2 2 2 -1.2571E+02 0.0000E+00 -1.6524E+03 -4.7128E+02
2 2 3 0.OOOOE+00 0.OOOOE+00 0.0000E+00 0.0000E+00
2 3 0 1.4261E+02 0.0000E+00 1.8022E+03 -4.2400E+02
2 3 1 1 -1.0036E+02 I .OOOOE+00 -1.8598E+03 9.4728E+02
2 3 2 4.1161E+01 O.0000Ee00 I8.7650E+02 -4.6230E+02
2 3 3 0.00+ .OOOOE+00 0.0000E+00 O+ 0 .000E+00
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Table 7 Coefficients of polynomials (26a.1) to (26b.2)
for Problem (2)

p q s x 21 (,)Y( 2 ,1) (2)
pqs pqs pqs pqs

1 0 0 4.4980E-02 1.7911E-01 -3.4397E+t01 -9.7220E-01
1 0 1. 1.4205E+00 1.1863E-02 1.3797E+02 -6.0517E+00
1 0 2 -1.3067E+00 -4.6399E-03 -1.2161E+02 1.2914E+.00
1 0 3 0.OOOOE+00 0.OOOOE+OO 1.6083E+00O0.OOOOE+00
1 1 0 1.0267E+00 1.0965E+I00 1.5796E-02 1.9387E+.01
1 1 1 -8.1648E+00 -2.6270E+00 -4.8040E+02 1.4744E+01
1 1 2 7.6367E+00 7.6423E-01 4.0362E+02 -6.0552E+t00
1 1 3 0.OOOOE+00 0.OOOOE+00 -2.3961E+01 0.OOOOE+00
1 2 0 -2.3842E+01 -1.3997E+00 -4.7568E+02 -5.1005E+01
1 2 1 6.1551E+01 4.7890E+00 2.5405E+i02 -1.5115E+01
1 2 2 -4.1235E+01 -1.6465E+00 1-2.7887E+02 1.1186E+01
1 2 3 0.OOOOE+00 0.OOOOE+Q00 5.3624E+02 0.OOOOE+00
1 3 0 5.0970E+01 0.OOOQE+00 -2.7518E+02 4.2245E+01O
1 3 1 -1.1814E+02 I0.0000E+00 2.7326E+03 -1.1905E+00
1 3 2 7.2459E+01 0.OOOOE+00 -1.3206E+03 -5.5917E+00
1 3 3 0.OOOOE+00 0.OOOOE+00 -1. 3142E+03 0.OOOOE+00
2 0 0 1.1656E+00 -3.4406E+00 2.2052E+02 0.0000E+00
2 0 1 -1.8971E+i01 2.4326E+00 -4.0462E+02 I .0000E+00
2 0 2 1.5030E+01 -7.8577E-01 -7.2028E+02 j .OOOOE+00
2 0 3 O.0000E+00 0.0000E+00 1.0938E+03 0.OOOOE+00
2 1 0 2.2888E+01 1.5467E+01 -6.3733E+02 0.OOOOE+00
2 1 1 6.9402E+01O -1.0844E+01 1.3699E+03 0.0000E+00
2 1 2 -8.2563E+01 3.4696E+00 1.2412E+03 0.0000E+00
2 1 3 0.0000E+00 0.0000E+00 -2.7180E+03 0.0000E+00
2 2 0 -9.0318E-02 -6.2833E+00 1 .8033E+031I 0,0000E+00
2 2 1 -2.4824E+02 -6.1725E+00 9.3307E-02 0.0000E+00
2 2 2 2.4491E+02 4.4776E-01 6.8139E+03 0.0000E+00
2 2 3 0.OOOOE+00 O.OOOOE+O0 -9.8197E+03 I0.OOOOE+00
2 3 0 -1.3510E+02 0.OOOOE+O0 4.0440E+031 0.0000E+00
2 3 1 4.9533E+02 0.0000E+00 -1.6234E+04 0.0000E*00
2 3 2 3.7369E+02 0.OOOOE+00 -2.3441E+04t 0.OOOOE+00
2 3 3 0.0000E+00 0.0000E+00 3.7646E+04 0.0000E.00
3 0 0 0.OOOOE+00 0.0000E+00 -2.2984E+402 0.0000E+00
3 0 1 0.0000Es00 0.0000E+00 -4.3422E+02 0.0000E+00
3 0 2 0 OOOOE+00 0.0000E+00 2.6958E+03 0.0000E+00
3 0 3 0:0000E+00 0.OOOOE+00 I-2.8198E+03 0.OOOOE+0Q
3 1 0 0.0000E+00O0.OOOOE+00 -8.0843E+02 0.0000E+00
3 1 1 0.0000E+00O0.0000E+00 2.6784E+03 0.0000E+00
3 1 2 0.0000E+00 I .0000E+00 4.2135E+03 O.0000E.00
3 1 3 * .0000E+00! 0.0000E+00 -2.3381E+03 0.0000E+00
3 2 0 O.OOOOE+O0 0.0000E+00 9.7915E+03 0.0000E+00
3 2 1 0.0000E+00 0.0000E+00 -4.0365E+04 0.0000E+00
3 2 2 0.0000E+001 0.0000E+00 -2.8534E+04 0.0000E+00
3 2 3 Q.OOOOE+00 Q.0000E+O0 5.6549E+041 I .0000E+00
3 3 0 0.0000E+00' 0.0000E+00 -2.4737E+041 0.0000E+O0
3 3 1 0.0000E+00 0.0000E+00 6.3754E+041 0.0000E+00
3 3 2 0.OOOOE+00. 0.OOOOE+00 1.1662E+051 0.OOOOE+00
3 3 3 0.OOOOE+00 0.OOOOE+00 -1.5932E+05 0.OOOOE+00
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Table 8 Coefficients of polynomials (26a.1) to (26b.2)

for Problem (3) X 33s' Y 3 3s -0)

p q s x (,) 32) Y (31)Y(3,2)

1 0 0 4.60I1E-03 8.0875E-01 -1.5119E+00 -1.0891E+01
1 0 1 -1.0581E-01 -1.3423E+00 -1.3759E+01 1.7244E-01
1 0 2 1.5066E-01 0.OOOOE+00 9.1954E+00 -1.4304E+i01
1 0 3 0.OOOOE+00 0.OOOOE+00 0.OOOOE+00 3.9456E+00
1 1 0 -3.5730E+00 -2.0032E+00 -4.9449E+01 1.1683E+01
1 1 1 3.8074E+00 4.6367E+00 1.5889E+02 -8.5217E+00
1 1 2 -1.2534E-01 0.OOOOE+001 -8.1243E+01 -5.4158E+00
1 1 3 Q.OOOOE+00 0.OOOOE+001 0.0000E+00 -2.1868E+00
1 2 0 2.0181E+01 5.6744E+00i 2.4158E+02 0.OOOOE+00
1 2 1 -2.9163E+t01 -6.9607Et00i -4.7704E+02 0.0000E+00
1 2 2 6.0356E+00 0.OOOOE+001 1 .6456E+02 0.QOOOE+00
1 2 3 0.OOOOE+00 0.0000E+00 0.OOOOE+00 O.0000E+00
1 3 0 1-2.5633E+01 0.OOOOE+00i -2.5499E+i02 0.OOOOE.00
1 3 1 4.5789E+01 0.OOOOE+001 3.6793E+02 0.0000E+00
1 3 2 -1.4734E+01 0.0000E+00 -4. 5176E+s01 0.QOOOE+00
1 3 3 0.0000E+00 0.OOOOE+00i I .OOOOE+00 0.OOOQE+00
2 0 0 1-3.3853E-01 -l.0764E.-li 1.5635E+01 -5.6818E+01
2 0 1 5.3594E+00 2.0515E+i01' 5.6553E+01 1.4930E+02
2 0 2 -5.2904E+.00 0.0000.1-00 -3.7740E+01 -9.7176E+01
2 0 3 0.0000E+O0 0.OOOOE+OO1 0:OOOOE+Oo 1.9697E+01
2 1 0 1 8.8234E+t00 -l.59!0E+01! -1.9539E+02 5.8317E+01
2 1 1 -4.0061E+01 -3.5513E+01: 2.7947E+01 -2.2321E+02
2 1 2 3.7302E+01 0.OOOOE+O0 -5.3576E+01 1.6611E+02
2 1 3 0.OOOOE+0O 0.0000E+00i 0.OOOOE+00 ;-3.4682E+01
2 2 0j -7.1578E+01 -6.9348E+O00 7.3457E+02 0.0000E+00
2 2 1 1l.4890E+02 4.9963E+01; -1.6397E+03 0.0000E+00
2 2 2 -8.0834E+01 0.0000E+00 1.4676E+03 0.0000E+00
2 2 3 0.0000E+00 0.0000E+00, 0.0000E+00 0.0000E+00
2 3 0 9.9964E+01 0.0000E+00: -9.6305E+02 0.OOOOE+00
2 3 1 -2.0570E+02 0.0000E+O00 3.0293E+03 0.0000E+00
2 3 2 9.3005E+01 0.0000E+00 -2.5766E+03 0.0000E+00
2 3 3 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
3 0 0 0.OOOOE+00 5.2036E+01 0. 0000E+00 0.0000E+00
3 0 1 0.OOOOE+00 -8.4383E+01 0.OOOOE+00 0.OOOOE+00
3 0 2 0.0000E+00 0.OOOOE+00 0 .OOOOE+00 0.0000E+00
3 0 3 O.0000E+00 0.0000E+00 0.0000E+00 O.0000E+00
3 1 0 j .0000E+00 5.4394E+01 0.OOOOE+00 0.0000E+00
3 1 1 O.0000E+0O 1.4518E+02 0.0000E+00 0.0000E+00
3 1 2 0.0000E+00 0.0000E*00 0.0000E+00 0.0000E+00
3 1 3 0.OOOOE+00 0.0000E+00 0.OOOOE+00 0.OOOOE+00
3 2 0 0.OOOOE+00 ;-1.1444E+02 0.OOOOE+00 0.0000E+00
3 2 1 0.0000E+00 '-8.3128E+01 0.OOOOE+00 0.0000E+00
3 2 2 0.0000E+00 0.0000E+00 0.0000E+00 0.OOOOE+00
3 2 3 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
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Table 9 Coefficients of polynomials (26a.1) to (26b.2)

for Problem (4) CX 23'X 3 Y 23'Y s- 0)

______pqs pqs pqs pqs

1 0 0 -3.2587E-01 1.2001E-02 -6.6054E+00 -4.7946E+00
1 0 1 3.7426E-01 3.8127E-02 -2.6497E-01 -1.9074E+i00
1 0 2 3.6561E-02 4.8180E-02 0.OOOOE+00 0.OOOOE+00
1 0 3 0.OOOOE+00 0.OOOOE+001 0.OOOOE+00 0.OOOOE+00
1 1 0 8.0086E-01 -6.7988E-01l 2.5899E+01 2.3497E+01
1 1 1 I-1.9838E+00 -6.4505E-01 1l.3825E+00 -7.0045E-01
1 1 2 1.1054E-01 1.6759E-011 0.0000E+00 0.OOOOE+00
1 1 3 0.OOOOE+00 0.0000E+00 0.0000E+00 0.OOOOE+00
1 2 0 5. 8229E-01 8.1387E-01 -2.2990E+01 -2.7635E+01
1 2 1 1.2307E+00 2.5439E+.00 -4.4066E+00 4.2335E+00
1 2 2 2.7677E-011I -1.0634E+00 0.0000E+00 I .OOOOE+00
1 2 3 0.0000E+00 0 0000E+00 0.0000E+00 0.0000E+00
1 3 0 0.0000E+00 0.0000E+00 0.0000E+00 0.OOOOE+00
1 3 1 0.0000E+00 0.0000E+00 0.0000E+00 0.OOOOE+0
1 3 2 0.0000E+00i 0.0000E+00 0.0000E+00 0.OOOOE+00
1 3 3 0.OOOOE+00. I .0000E+00 0.0000E+00 0.OOOOE+00
2 0 0 1. 4991E+001 -1.4935E+00 2.5284E+01 1.8234E+01
2 0 1 1.0240E+00 i 3.0513E+00 -2.2889E+00 I1.6523E+00
2 0 2 -2.7217E+001 -1.8975E+00 0.0000E+00 0.0000E+00
2 0 3 1 0.0000E+001 0.0000E+00 0.0000E+00 0. 0000E+00
2 1 0 -1.2694E+01l 6.5026E+00. -1.3826E+02 -1.0653E+02
2 1 1 9.0147E+00; -6.9495E+00i 2. 7114E+01 1.4958E+01
2 1 2 7.1809E+00 4.6407E+00i I .OQOOE+00 0.0000E+00
2 1 3 0.0000E+001 0.0000E+001 I .0000E+00 I .0000E+00
2 2 0 5.1746E+00 -9.5870E+001 1.4436E+02 1.3627E+02
2 2 1 -1.9962E+001 9.1101E-01 -1.1742E+i01 -3.5588E+01

'.2 2 2 -1.3561E+011 -2.9050E+00 0.0000E+00 0.0000E+00
2 2 3 0.OOOOE+001 0.OOOOE+00 0.OOOOE+00 0.OOOOE+00
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Table 10 Coefficients of polynomials (26a.1) to (26b.2)

for Problem (5) (X 3q'Y 3s- 0)

p q si x x Y

1 0 0 1.7531E-01 3.0014E-01 3.0181E+01 -6.5174E+00
1 0 1 -1.1768E-01 -6.4930E-01 -6.3848E+01 2.8785E+00
1 0 2 -4.6124E-02 5.5971E-011I 2.6805E+01 -2.3563E+00
1 0 3 0.OOOOE+00 -1.1408E-0l 0.OOOOE+O0 0.OOOOE+00
1 1 0 -2. 5995E+00 2.8194E+00 -2.4054E+02 -7.4074E+s00
1 1 1 7.0347E+00 -4.2148E+00i 5.4821E+02 4.1677E+01
1 1 2 -4.3277E4-00 8.1776E-0l -2.8360E+02 -1.4110E+01
1 1 3 0.OOOOE+00 7.8482E-02: 0.0000E+00 0.OOOOE+00
1 2 0 0.OOOOE+00 -2.9033E+00; 3.9446E+02 5.5070E+01
1 2 1 0.OOOOE+00 3.0314E+00! -9.3436E+02 -1.2007E+02
1 2 2 0.OOOOE+00 2.2003E+00 I 5.1613E+02 4.5461E+01
1 2 3 0.OOOOE+00 -1.2209E+001 0.OOOOE+00 0.0000E+00
1 3 0 0.OOOOE+00 0.OOOOE+00 I0.OOOOE+00 0.OOOOE+00
1 3 1 I .OOOOE+00 j .OOOOE+001 0.OOOOE+00 0.OOOOE+00
1 3 2 0.OOOOE+00 O.0000E+001 0.OOOOE+00 0.OOOOE+00
1 3 3 0.OOOOE+001 0.OOOOE+0 O .0OOOOE+00 0.0000E+00
2 0 0 2.5910E+00 -6.*2418E-011 -6.2190E-011 8.3148E+01
2 0 1 -8.5914E+.00 -8.1785E-01: 2.1830E+01 -1.1222E+02
2 0 2 5.7373E+00 1.4816E+001 6.2948E+011 4.4637E+01
2 0 3 0.OOOOE+001 -8.6639E-01! 0.0000E+001 0.OOOOE+00
2 1 0 8.9134E+001 -3.3216E+001 8.4793E+02 -3.2857E+02
2 1 1 -1.6126E+01l 8.0049E+00 1l.4123E+031 4.1580E+02
2 1 2 6.9518E+00 -2.5632E+00, 4.5535E+02i -1.6118E+02
2 1 3 0.OOOOE+00! 1.4334E+00 0.OOOOE+00 O.OOOOE+00
2 2 0 0.0000E+001 1.7599E+01! -1.6084E+031 1.1821E+02
2 2 1 0.OOOOE4001 -2.9872E+01 3.1919E+03! -5.7679E+01
2 2 2 0.OOOOE+00 I 7.1522E+00Q -l.4621E+03 1.7903E+01
2 2 3 0.0000E+001 -1.5332E+00 0.OOOOE+00 0.OOOOEt00
2 3 0 0.OOOOE+001 0.OOOOE+00 0.OOOOE+00 O.OOOOE+00
2 3 1 0.OOOOE+00; 0.OOOOE+00' 0.OOOOE+00i 0.OOOOE+O0
2 3 2 0.OOOOE+00 0.OOOOE+00' 0.OOOOE+00i 0.OOOOE+00
2 3 3 0.OOOOE+00 0.OOOOE+00O0.OOOOE+001 0.OOOOE+0O
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CHAPTER III

ON MECHANICS OF CRACK GROWTH AND ITS EFFECTS ON

THE OVERALL RESPONSE OF BRITTLE POROUS SOLIDS

M. Isida* and S. Nemat-Nasser

Department of Applied Mechanics and Engineering Sciences

University of California, San Diego, La Jolla, CA 92093

Abstract

This paper is concerned with crack growth in brittle porous solids

under compression and its effects on the overall response of the material.

As a mathematical model, we consider an elastic solid containing a zig-zag

array of circular holes with a pair of edge cracks (two-dimensional

problem), and solve this problem by using a theory which gives numerical

results as accurate as desired. Based on the analytical results, we discuss

the crack growth process and estimate the effective Young's moduli as well

as the stress-strain relation for porous solids. Our computations show that

the cracks emanating from the poles of the circular holes extend in the

axial direction and grow -- in most cases in a stable manner, but for

certain cases in an unstable manner during an intermediate loading state --

as the overall applied uniaxial compression increases, reaching a certain

* Present address: Department of Mechanical Engineering, Kurume Institute
of Technology, 2228 Mukuno Kamitsumachi, Kurume 830, Japan.
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limiting maximum length. This maximum crack length strongly depends on the

ratio of the hole radius to the hole spacing in the loading direction. The

effective Young's modulus in the direction of the crack growth is basically

determined by the initial porosity, and is little affected by the crack

length or its growth regime, i.e., whether stable or unstable. We find that

the overall axial stress-strain curve remains monotonic, exhibiting no peak

stress or strain softening, as cracks extend in the axial direction and

reach their limiting length with increasing axial stress.

V

.
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1. INTRODUCTION

For a large class of brittle materials, failure often involves the

formation and growth of tension cracks. Under farfield overall tensile

forces, such tension cracks initiate at preexisting flaws or defects, or at

inclusions or other material heterogeneities which serve as stress

concentrators. Tensile failure of this kind has been extensively studied

since the pioneering work of Griffith [1]. It is also known that failure of

brittle materials under farfield compressive forces is often caused by the

formation and growth of tensile microcracks at preexisting flaws or other

heterogeneities. In this case, even though the overall farfield stresses may

be compressive, the presence of defects may produce high tensile stresses at

the local level, leading to the formation of tension cracks. Brittle

failure of this kind is rather complex and has received attention of

researchers only recently.

Various mathematical models have been considered in order to explain

and analytically quantify brittle failure in compression. A noteworthy

model is a straight preexisting crack inclined with respect to the maximum

overall farfield compression, producing tension cracks at its tips due to

the relative frictional sliding of its faces; see [2-11]. Recently, Nemat-

Nasser and Horii [8,9], and Horii and Nemat-Nasser [10,11], have analyzed

the elasticity problem associated with this model by considering a

preexisting thin straight flaw (or a set of such flaws) endowed with both

frictional and cohesive resistance, and embedded in a linearly elastic

solid. By examining the growth of tension cracks which emanate from the

tips of such a flaw, as well as from the tips of an interacting set of such

flaws which are suitably arranged, these authors show that the model does

capture the essential features observed experimentally, i.e., axial
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splitting in uniaxial compression, and faulting when the axial compression

is accompanied by some moderate confining pressures. In addition, by

including the possibility of the formation of a plastic zone at the crack

tips, Horii and Nemat-Nasser [9-11] show how the model can be used to

explain the process of brittle-ductile transition. These authors also

report on a set of model experiments which seem to corroborate their

analytical predictions.

Microcracks may also nucleate at pores in a porous solid and grow under

farfield compressive stresses. This suggests an alternative model for the

analysis of failure in compression of brittle solids containing micrc-

cavities. To be able to examine the physical consequences of a model of

this kind, one requires a solution of the problem of crack growth from the

walls of cavities under prescribed farfield stresses. In the two-

dimensional case, the elasticity problem of cracks extending from the edges

of a circular hole has been solved by Bowie [12] for an infinitely extended

medium. The more general problem of cracks emanating from an elliptical

hole in a plane has been treated by several authors [13-161 where some of

the results have been put in a form convenient for design purposes [17,18).

Recently, Sammis and Ashby [19] proposed to use edge-cracks emanating

from circular (in two dimensions) or spherical (in three dimensions)

cavities, as a basic model for the analysis of brittle failure in

compression. With the aid of model experiments, these authors show that

cracks can grow from pores and extend in the direction of maximum

compression. However, since an exact solution for a finite body containing

a circular cavity with edge-cracks does not exist, these authors use

approximate estimates based on the beam theory. In particular, for a solid

containing periodically distributed holes with edge-cracks, Sammis and Ashby
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estimate the relation between the overall uniform axial stress and the axial

strain, arriving at a stress-strain relation with a peak stress followed by

a descending portion (i.e., "strain softening"). In this model, the cracks

are assumed to initiate at the poles of the circular holes and to extend

straight in the direction of axial compression. Since approximate

expressions based on strength-of-material considerations are used, it is

not clear whether an exact solution of the associated elasticity problem

would also produce a peak stress followed by "strain softening".

In this paper we solve the problem of a zig-zag array of circular holes

with a pair of edge cracks. In the method used the results can be rendered

as accurate as desired. Based on our numerical results, we discuss the

crack growth process, the effective Young's moduli, and the stress-strain

relation of porous solids. Our solution predicts a monotonically increasing

axial stress-strain relation for this model problem even when the cracks

grow axially in an unstable manner.
,.

2. THEORETICAL ANALYSIS OF ZIG-ZAG ARRAY OF HOLES WITH EDGE CRACKS

As a mathematical model of porous solids with micro-cracks, we consider

an infinite solid with a zig-zag periodic array of holes with edge cracks,

as shown by Fig. 1. Due to symmetry, we solve this problem using suitably

symmetric stress potentials defined on the rectangular region OEFGO; see

* In [19], the change in potential energy due to cracking is calculated for

small crack lengths (i.e., I + L= I is used in equation (22) of [19]).

The results are then used to calculate the elastic modulus of the cracked

body for large crack lengths. This may be a major cause of the strain

softening prediction in [19].
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Fig. 2 for notation and definition of various geometric quantities. Figs.

3-1 and 3-2 show the two typical hole distributions corresponding to

b/c- 0.577 and b/c- i, which are the equilateral triangular array and the

square array, respectively.

We consider the biaxial loading case in which

a1 l a0 , 0 2- A2o0  (1)

where 01 and a2 are the applied stresses at infinity in the x- and y-

directions, respectively, and a0 is a positive reference stress.

The analytical procedure for the solution of this problem is outlined

in Appendix 1. Here we discuss the numerical results.

The numerical values of the stress intensity factor KI are given in

terms of the following dimensionless quantity, FI:

KI(AIA 2 )

FI(AIx) I (a 2 (2)
1l'2 a 0(ira) l

Let E (in compression) and E (in tension) be the effective Young'sx y

moduli in the x- and y-directions for the porous solid with cracks. They

are obtained from the displacements, u along EF and v along FG, associated

with cases A - 1, A2 - 0 and A1 - 0, A - -1, respectively. Their

numerical results are given in terms of the "modulus-reduction-factors", Cx

and C y, which are defined by:

E EC._x C - (a
x E0' y (3a)

where

E
E0 - E (plane stress), E 0 1 -V 2  (plane strain) (3b)

Note that E for compression is not the same as that for tension, oncey

cracks in the x-direction are developed. In this case, E (compression)
y
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E (uncracked porous) > E (tension with cracks).Y Y

C and C depend on Poisson's ratio. (Numerical results presented byx y

Fig. 8-1 to Fig. 13 have been obtained for plane strain with v -0.3.)

3. CRACK GROWTH PROCESS IN BRITTLE POROUS SOLIDS UNDER COMPRESSION

3.1. Uniaxial Compression (A1 - l, x2 - 0)

The solid curves in Figs. 4-1 to 4-3 give the dimensionless stress

intensity factors F1 (1,0) for various values of b/c in the case of uniaxial

compression. In the range b/c:5l, which includes the two typical cases

shown by Figs. 3-1 and 3-2, the value of F1 (1,0) decreases monotonically

with increasing values of L, i.e. an increase in the applied stress is

required in order to extend the crack (at constant critical stress intensity

factor). Thus the crack extension regime is stable in this range of b/c.

FI reduces to zero at a certain value of L, depending on the values of b/c

and c/a. This trend becomes more pronounced as b/c increases.

For larger values of b/c, unstable crack growth may occur, as shown by

Fig. 4-3. We observe that, for certain values of c/a, FI which is first a

decreasing function of L, may begin to increase with increasing crack

length, L, after a certain crack length is attained. However, since the

ascending portion of the FI, L-curves are followed by a descending portion,

the corresponding unstable crack growth is expected to cease and be followed

by a stable one.

Since K is constant ( KIc) during the crack growth, we can define

the normalized applied stress by the reciprocal of FI, that is

" °cl( -a)(
a KIc

,L-curves for b/c-0.577 and b/c- 1/0.8 are given in Figs. 5-1 and
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5-2, respectively. In the range b/c !, a increases monotonically with

increasing L, as shown in Fig. 5-1 for a typical case. Therefore the crack

growth is stable in this range of b/c. For larger values of b/c, we

observe an intermediate stage where 3 decreases with increasing L, as shown

by Fig. 5-2. The crack growth behavior in this case depends on the test

conditions. If the specimen is tested under a displacement-controlled

machine, the a , L-relations will be as shown in Fig. 5-2, consisting of an

initial increasing stage, an intermediate decreasing stage, and a final

increasing stage. In load-controlled tests, however, the crack will extend

from L - LI to L - L2 abruptly, and then a increases with increasing value

of L, following the curve shown in Fig. 5-2. Therefore in this case, the

crack growth is temporarily unstable.

As is seen in Figs 5-1 and 5-2, the crack growth, except for the

unstable stage in Fig. 5-2, becomes more gradual as L increases, and L

approaches a certain limiting value Lmax when a tends to infinity. The

value of Lmax can be determined graphically from diagrams similar to Figs.

4-1 to 4-3, by finding the intersection of the F -curves with the L-axis.

The variation of L with b/c and c/a is displayed in Figs. 6-1 andThe aritionof max

6-2, respectively. They show that L varies almost linearly with both b/c
max

and c/a, and, hence, can be fitted by the linear relation

Lmax - -1.025+0.003 + ( 0.061+0. 9 8 1) (5a)
a c a

Results from Eqn. (Sa) are shown by dashed lines in Figs. 6-1 and 6-2.

Eqn.(5a) may also be expressed as

c baLmax 1.025 +0.003 c + - ( 0.981 0.061) (5b)
a a c
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which shows that Lmax is also linear in b/a for fixed values of c/a. In

Fig. 6-3 we have plotted the numerical values of Lmax for various c/a,

taking b/a as the abscissa. It is seen that Lmax is almost independent of

c/a, and can be approximated by the following linear expression of b/a:

b
Lmax - 0. 9 7 (t -) (5c)

Eqn. (5c) is sufficiently accurate, at least for the range of b/a and c/a

shown in Figs. 6-1 and 6-2.

The above b/a - dependence of Lmax in a limited range of b/c can be

understood from the behavior of the stress flow around the crack tips, which

is mainly affected by the relative horizontal hole spacing, b/a, and is

little disturbed by the relative vertical spacing c/a.

3.2. Effect of Lateral Confining Pressure

The lateral confining pressure considerably reduces KI and, hence,

L max . As an example, FI and Lmax for a one percent lateral compression are

given by dashed curves in Figs. 4-1 to 4-3. In order to examine the effect

of the lateral pressure on L calculations are performed for various

values of X (-a 2/a1 ) in the typical case of b/c-0.577, and L is' max

evaluated. The results are plotted against X in Fig. 7, together with the

curve for an infinite solid (c/a- -) obtained as a limiting case of the

present problem. L reduces to zero at a certain value of A depending onmax

c/a. These limiting values of A for finite c/a are known as the ratio of

the minimum and the maximum of the circumferential stress along the holes

without cracks which are zig-zagly distributed [20]. The calculated curves

in Fig. 7 are extended toward these limiting values by dashed lines.
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4. MODULUS CHANGE AND STRESS-STRAIN RELATION

4.1. Compression in the Crack Growth Direction

Figs. 8-1 to 8-3 show the change in the elastic moduli due to crack

extension for b/c- 0.577, 1 and 1/0.8, respectively. Values of the

modulus reduction factor C are plotted by solid lines against the

normalized crack length, L, for various values of the hole size parameter

c/a. We find that Cx decreases for smaller values of L, and tends to be

almost constant for larger values of L. Note that these curves are

terminated at points where the corresponding limiting maximum crack length,

Lmax, is attained.

Since C depends on b/c and c/a in Figs. 8-1 to 8-3, it is of interest

to check the relation between C and the porosity fH- fa2 /(2bc). In Fig.x

9, we have plotted C against fH for various values of b/c, where L is taken

to be 1.5 for convenience. We find that Cx is not much affected by b/c.

Thus we can conclude that, for all practical purposes, the modulus reduction

factor C depends only on f., and is almost independent of b/c and L, unless
x H

b/c is extremely small.

The limiting values of Cx when L- 0 are obtained by analysing a zig-

zag array of holes without cracks [201. Typical results are plotted in Fig.

10, and we find that (C x)L_ also strongly depends on fH and is little

affected by b/c. These analytical values are fitted by the following

polynomial with good accuracy:

(Cx 0 - 1 - 2 .5 9 2 fH + 3. 050 f2 - 3.354 f3

x LO HH H

+b- 0.828 f + 1.586 f2 + 7. 664 f3 ]

-Nc H H H
2

+ b [ 0.310 f + 0.836 f2 - 11.680 f 3
H H
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(0.255b/c 1.33 and f H0.5) (6)

Let's make further comments on C for the two typical cases shown byx

Figs. 3-1 and 3-2. As is seen in Figs. 8-1 to 8-3, C remains almostx

constant after the crack length reaches a certain value which seems to be

around 1.5. Fig. 11 shows the values of C for L=0 and for Ltl.5.x

These are the upper and the lower bounds for C . The values for L- 0 arex

well fitted by the following polynomials:

(Cx)b/c05770 - 1 -2.977 fH + 4.910 fH (7a)

(Cx)b/c~l0 - 1 -2.972 fH + 2.536 f2 (7b)

In the special case of b/c- 1, (C x)i.O can be also obtained by

transformation of the results for a doubly periodic array of circular holes

distributed with equal spacings in both directions [211 (see Appendix 2).

Now we consider the stress-strain relations for this problem. Let a

and c be the axial compressive stress and strain, respectively. Then the

strain when the crack length is L is given by the integral

L

f JE 
(8)

L-0

It is oberved from Figs. 8-1 to 8-3, that E remains nearly constant

during the crack growth, in a wide range of values of b/c. In these cases

we have

CL E (9)
x

* which is written in the dimensionless form

a L~ EL " C-- 0  (10)
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where

E0 (7ra) L aL(lra) 1
L KIc L KIc FI L

It is to be emphasized that the linear relationship (10) holds

approximately even for cases where the crack growth is temporarily unstable,

as is seen in Figs. 5-2 and 8-3 for b/c- 1/0.8. Fig. 12 gives the

aL EL -relations for this case of b/c.

L' L

As stated above, our results do not show any significant reduction in

the axial stiffness of the porous solid with axial crack growth, unless b/c

is extremely small. Our numerical results produce monotonically increasing

axial stress-strain relations without any peak stress, even when axial

cracks grow in an unstable manner in the axial direction. The effect of

such an axial crack growth on the axial strain and axial stiffness is of

second order which does not change the character of the corresponding

stress-strain relation.

4.2. Young's Modulus Transverse to Crack Growth Direction

The modulus reduction factor Cy for tensile loading, is given by

dashed curves in Figs. 8-1 to 8-3. As is expected, C decreasesY

considerably with crack growth, and the tensile load-carrying capacity of

the specimen reduces to zero when the adjacent cracks join. Thus C is zero
Iy

when a+1-b or L-*(b/c)(c/a)-l. The curves obtained by numerical

calculation may therefore be extended to their corresponding limiting values

on the L-axis, as shown by dotted lines.

An abrupt drop in the value of C is observed in Figs. 8-1 to 8-3.Y

Fig. 13 gives the relation between C and fH for L- 1.5. C is not
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much affected by the variation in b/c, similarly to C . However, it should

be noted that, unlike Cx, Cy suffers a considerable reduction with

increasing L. Therefore, Fig. 13 should be regarded as an example for

L- 1.5. Cy, for tensile loading, depends very strongly on L, as well as on

f H
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APPENDIX 1 : ANALYSIS OF ZIG-ZAG ARRAY OF HOLES WITH EDGE CRACKS

Analytical Concept

Consider an infinite solid with a zig-zag periodic array of holes with

edge cracks as shown by Fig. i. Due to double symmetry, we solve this

problem using stress potentials defined on the unit rectangular region in

the first quadrant, OEFGO; see Fig.2.

The analysis is performed by superposing two stress states. The first

one is represented by the complex potentials 4l(z) and l(z) having

singularities within the hole. The second stress state is properly singular

at the crack tips, and is realized by distributing suitable force doublets

along the cracks.

The above two stress states are established in such a manner that they

automatically satisfy the traction-free conditions at the hole.

The boundary conditions on the crack and at the outer edges of the unit

region are given in terms of stresses and displacements. In the present

analysis, the stress conditions are replaced by those of the resultant

forces in order to increase the accuracy of the numerical results [22,23].

Displacements and Resultant Forces due to the First Stress State

In plane problems of elasticity, components of the stress, the

displacement, and the resultant force with respect to the Cartesian

coordinates are expressed in terms of two complex potentials, O(z) and O(z),

as follows [241:
a +ay x

22 Re[0'(z)]2

(Al1)

- 81 -



a7 -a

2 xy 0"W+0W

2G( u -iv) - c(T) - YO(zW - (zW (Al. 2)

P y+ ip - -(Y) - 10(zW -OW) (Al. 3)

where G is the shear modulus, and K is defined in terms of Poisson's ratio,

Y', as follows:

3- v' (plane stress), - 3- 41, (plane strain) (A1.4)

The complex potentials (1 z) and 0 1 Wz for the first stress state are

expressed as the following Laurent series:

01W M0 +N EI[ n( 2n+l -(2 1 )4n z-(2n-1) )-K 2n n2Z-(nl

n-0n

0,Az) - -2M 0a 2 z- -+ N1 Z K2 z2_ (2n ~ 4n+4 Z- (2n+3) (l5

+M 2[n( (2nn)2~ a 4n) (Al.5)

UsigP27s(Al.)i qs(l2 and (AL.3), we have the following

expressions for the displacements and the resultant forces:
-1N-1 2n+l 2n

2G(u- iv) (1) - M 0(2a2Z +(c-l)Y)+ nE 1M 2n [ICZ (nli

+(2~l~ 4 (-.,- (n-l_ 2n-)Y- 2 )+(2n)2 a 4n+2~ - (2n+l)1

N-1 2n+l 4n+2 -(2n+l) -(n2+ nZ 0K 2n [-z -a (,cz +2~)

+(2n+l)a 4n+4z Z-(2n+3)~ (A1.6a)

(P y+ iP )() - M 2Z 4 lH Nd EIM [-i2_ (2n~)E 2n
y x LL\La /n-l 2n

+(2 l) 4 n T-( 2 n_ n-)I2n )+(2n)2 a 4n+2~ 7-(2n+l)1

+ N KZ1 n [-z2n+l +a 4n+2 (z-(2n4-l)_ (2nl)iz -(2n+,2))

+(2n+l)a 4n+4z Z-(2n+3)1  (Al. 6b)
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The above expressions include 2N unknown coefficients M2n and K2n

(n-O,l,2,---,N-l) to be determined from the boundary conditions.

Displacements and Resultant Forces due to the Second Stress State

The second stress state is realized by distributing force doublets of

arbitrary densities on the cracks. The force doublets are established from

stress states for concentrated forces acting in an infinite solid which

contains a circular hole, and, therefore, the traction-free conditions at

the hole edge are satisfied automatically. Expressions for the

displacements and the resultant forces due to these distributed force

doublets are as follows [25]:

2 .1/2Wl I

2G (u - iv)(2) - 2+(2) J 2,7 -m~ sm wlI + sMw 1 +(sMw 1 )2

m-l -2/2

1 - + W1 -l 2)2 2(Ww-w2 ) 2 (W Wa 1
+ mW2 Smw 2 + 2 - (s-w 2 )

2  
1- 2)(lw 2 ) Z2( 

2  3

+(s -z+) 2 i

2 cz+-) (+)21 (Al.7a)

Z Js -+mw 3m (sm22 1/2W. I

Py + i)(2) - 1- Pm(Sm )  " , IW Sm-W1 
+  _

m-l -2/2

1 1 W -w2 wwl' 2 2
m+ Sm _---- + 21 1 -2 2 -

2 Mw2 (SmW 2)2 (SM -2 (W1 W2)(W1 2 z 2 (s m-w2)

a 2  i

+ (2 z + a) I ] (Ai.7b)z (sm+w 3)2
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where pm(Sm) (m- 1,2) are unknown density functions of the force doublets,

and the subscript m takes I for the right and 2 for the left crack,

respectively; the following notation is also used (see Fig. Al-l):

a
2

w1 - z - x , w2 - - w31 ,m' ~ z O,m ' W3XO~m

(Al.8)

Xom - a + - (m-l) x - -a - ( (m-2)
O 2 0,. 2

The density functions pm(sm) in Eqns.(Al.7) are then expressed as (261

Pm(s q (Sm  d)2_)[() S2 
]
l (A.9)

It is obvious from symmetry that

q2 (-s2) - ql(sl) (Al.0)

Thus ql(sl) is the only unknown function in the second stress state.

Boundary Conditions Based on Resultant Forces and Displacements

A piecewise linear approximation will be used to evaluate the unknown

weighting function ql(sl). For the right crack, this is shown in Fig. Al-2,

where equally spaced intervals are used. Eqns. (Al.7a) and (Al.7b) now

reduce to linear expressions in fj (j - 1,2,---,M), which are the values of

the weighting function at the ends of these intervals.

We now have 2N unknown coefficients in the first stress state and M

unknown weights, fj, in the second stress state to be determined from the

boundary conditions. Since both stress states satisfy the traction-free

conditions on the hole, we have only to consider the boundary conditions on

the crack and at the outer edges of the unit rectangular region. These

conditions are satisfied by means of a boundary collocation procedure based

-84
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on the displacements and the resultant forces. In the numerical

computations, the traction-free conditions of the cracks are replaced by M

relations, and those of the outer edges by 2N relations.

Since the cracks are assumed to be traction-free, the present analysis

is valid for such combinations of aI and a 2 that satisfy this assumption.

In order to obtain M relations from the traction-free conditions on

crack AIB I  (stated in terms of resultant force, P ), we divide this crack
1 y

into M intervals, DID2' D2D 3--- DMD M+I where D2' D 3---, DM are the mid-

points of the intervals shown in Fig. AI-2. Then the traction-free

conditions are:

Along crack A BI : [PDk+l - 0 (k - 1,2,---,M) (Al.lI)
1 yD k

The boundary conditions at the outer edges of the unit rectangular

region are given by the following relations (A.12a) and (Al.12b):
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Conditions for the side EF

u - const., T -0 (for any y)._ xy _

Conditions for the side FG : (Al.12a)

(ay)x - (ay)b-x , (Txy)x xy)b-x
x b riX b

[u]0 - [U] bx' [v] - [Vb]. (for any x)

Conditions for the total forces along the outer edges:
F H G

[P ] " [P ]s - a c [P I - a2b (Al.12b)
x E x G 1 F 2

K H
regarding the relation [P ]F - x in Fig. .

To impose these boundary conditions in numerical computations, EF and

-FG are divided into N 1 and N2 equal intervals, respectively, as shown in

Fig. 2, where N2 is taken to be an even integer, say 2N3.

The corresponding lengths of the intervals on EF and FG are
c b(Al3

h - -S- I h 2 - Nh (AI.13)

The boundary conditions (Al.12) are then replaced by the following

relations (Al.14a) and (Al.14b), in terms of the resultant forces and

displacements:

Sk+l Sk+l-
Along EF [u] Sk - 0, [Py]

A Sk (yIS - 0 (k - 1,2,---,N 1 )

S k+l SN +1-k _ k+l SN +1-k

Along FG [Pyisk [P Y] SN 4 -k [PXSk " [Px]SN4 k

Sk+l ul -k l IVIS 4 l-k

k N4.k k N 4.k

N - N2/2, N4 -2N1 + N2+l (k-N +1,N1 +2,---,N I+N3 )

(Al.14a)
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For the total forces:
F H

[xE - [Px] - ale , [P I - a2b (Al.14b)

In order to obtain the same number of simultaneous equations as there

are unknowns, the integer N in Eqn. (Al.6) is chosen such that

N - NI + N2  (AI.15)

The unknown quantities K2n' M2n (n-0,1,2,---,N-l) and f. (j-1,2,--

-,M) are determined by solving the simultaneous equations (Al.lI) and

(Al.14).

Accuracy of Results

The stress intensity factor at the crack tip is calculated by

K - f ir (Al.16)
I M2F

The numerical results are then represented in terms of the dimensionless

stress intensity factors given by Eqn. (2).

The accuracy of the numerical results would be improved with increasing

subdivision numbers M, NI and N It is however desirable to use minimum

values for these quantities which still provide needed accuracy.

Reasonable values of M have been determined from test calculations of

an infinite solid containing a circular hole with edge cracks, as a special

case of the present problem. Table Al-I gives typical results of F1 (1,0)

for I/a- 0.4. As is seen, any M larger than 5 seems to give reliable

values with errors less than one percent. In computations of the present

problem, M is taken to be 7 to 10 depending on the geometric parameters.

Other series of test cilculations have been done to determine

reasonable values for NI and N Table Al-2 gives an example for b/c-0.5,
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c/a-5 and I/a-2. F1 (1,0), C, and C y are given for various values of NI

and N whereas M is fixed to be 7. The convergence is excellent,

especially when NI - N2, i.e. h - h On the basis of the above and

similar results for other configurations, N1 and N2 are chosen to be 5 to

10, holding the relation hI Oh2 .

Thus the number of unknowns to be determined from the boundary

conditions is confined to less than 50 with good accuracy.
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APPENDIX 2 : STIFFNESS REDUCTION FACTORS FOR ZIG-ZAG ARRAY OF HOLES

The computer program prepared in a previous work [20] has been employed

to obtain the values of (Cx)L 0 . The numerical results are then fitted by

Eqn. (6) in terms of b/c and f Eqns. (7a) and (7b) are also proposed for

the two typical arrays of holes.

The values for the special case of b/c- 1 can also be obtained by the

transformation of the results for the doubly periodic array of circular

holes distributed with equal spacings in both directions [21] (Fig. A2-1).

The procedure will be outlined below.

The stress-strain relations for this problem can be written as follows:

E 1- D 1l a11 + D1122 a22

E 22 -D 2 2 1 1a1 1 + D2 2 2 2 a22 (A2.1)

E 12 D 1212a12

all C lilllE 1l +  C11221 122

a2 2  C2 2 1 1 11 + C2 2 2 2 22 (A2.2)

o12-C1212 12

where

D 1111 D 2222 D 1122 D 2211

a 1111 , 2222 C 1122 - 2211 (A2.3)

and

C 11 1 1
D1111 C 2  -C 2

1111 1122

-C1 1 2 2  (A2.4)

D122 2 -C 2
i11 1122

D 12 21

1212 -C 1 2 1 2
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Let D ik and C ik denote D ijland Cik for the unperforated solid

under plane strain. They are given as follows:

D I D - 0 D - 0 (A2.5)
11110 E 0 11220 E 0 E 12120 E0

C0 0 (26

C1 11 1 0  1 -vL0 
2 

' 11220 0 11110 ' 12120 1 1+ V0  (2

E - E-2  V' - (A2.7)
0 1-v2 V

where E, v are Young's moduluds and Poisson's ratio of the material under

plane stress, and E. Mv0  denote their equivalent values under plane strain.

Values of C 1 1 1 1/C 11 1 1 0  f I f), C 1 1 2 2 /C 1 1 2 2 0 C - f 2) and C122/110

(f 3 ) of this problem for -0.3 were given by Nemat-Nasser et al. in a

previous paper [21], using the notation C22 2 /C22 2  C22 /C2 3  an /,

respectively.

Eqns. (A2.4) and (A2.6) enable us to calculate D ijlfrom fl f 2andf3

by the relations

(1-V
2)f

1 0 1
D 11 1 1 -E f 2

-f
2

0 1 2

D 1 V 1 v(1-V 0
2 )f 2  (A2. 8)

1122 E 2f
0 1 2

D 1 1 + L,0

and the obtained values of E 0D ijlfor v- 0.3 are given in Table A2-1.

Now we rotate the coordinate axes by wr/4, and denote all quantities in

the rotated system~ of coordinates by superimposed star. Then, the following

equations determine D ijl fromD jl
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D* D DIII + D1122 + D1212

I111 2222 2

D * * 1111 + D1122 D 1212 (A2.10)
122- D2 2 1 1 - 2

D1212 -1111 1 1122

The modulus reduction factor C for a zig-zag array of holes is givenK

by 1/E0 DlII. The obtained values are in close agreement with those from the

direct analysis [201, as shown in Table A2-1.
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Table Al-i.

Variation of F 1 (1,0) with various M for

c/a co , I/a -0. 4.

M F 1 ,O)

3 0.210

4 0.211
5 0.213
6 0.214
-7 0.1
8 0.214

9 0.215
10 0.214
11 0.215

12 0.215
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Table Al-2.

F 1(l,0), Cx and C xfor b/c-0.5, c/a-5, I/a-2, M-7,

where N eq (number of equations) -M4+2(N I +N 2)

(plane strain, Y-O0.3).

1 2 eq F1 (1,) x cy
7 3 4 21 0.0343 0.908 0.550
7 4 4 23 0.0346 0.911 0.560
7 5 4 25 0.0338 0.891 0.484
7 5 6 29 0.0345 0.909 0.551
7 6 6 31 0.0345 0.909 0.552
7 7 6 33 0.0345 0.908 0.548
7 7 8 37 0.0345 0.909 0.551
7 8 8 39 0.0345 0.909 0.551
7 9 8 41 0.0345 0.908 0.551
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Table A2-1. Comparison of C x- E x/E 0for b/c- I

from Refs. [20] and [21] (v -0.3).

Doubly periodical holes C xfor Zig-zag holes

fE D -ED E D 11  Ref. [20]
H 0 1111 0 1122 11121

0.05 1.156 0.477 1.650 0.859 0.857
0.10 1.297 0.510 1.944 0.732 0.728
0.15 1.455 0.538 2.327 0.617 0.612
0.20 1.621 0.564 2.823 0.515 0.509
0:25 1.808 0.583 3.501 0.423 0.419
0.30 2.018 0.602 4.396 0.344 0.341
0.35 j022 0.277
0.40 2.492 0.629 7.141 022 0.225
0.45 I 0.186
0.50 3.195 j 0.661 12.110 0.137 0.160
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Figure captions

Fig. 1 Infinite solid with zig-zag periodic array of holes and cracks.

Fig. 2 Unit rectangular region and notation of geometric quantities.

Fig. 3-1 Equilateral triangular array of holes and cracks, b/c-0.577.

Fig. 3-2 Square array of holes and cracks, b/c- i.

Fig. 4-1 F1 (1,0) and F1 (1, 0.01) for b/c-0.577.

Fig. 4-2 F1 (1,O) and F1 (1, 0.01) for b/c-i.

Fig. 4-3 F1 (1,0) and F1 (1, 0.01) for b/c-1/0.8.

Fig. 5-1 Relation between c and L for uniaxial compression, b/c-0.577.

Fig. 5-2 Relation between and L for uniaxial compression, b/c -1/0.8.

Fig. 6-1 Relation between Lmax and b/c for uniaxial compression.

Fig. 6-2 Relation between Lmax and c/a for uniaxial compression.

Fig. 6-3 Relation between Lmax and b/a for uniaxial compression.

Fig. 7 Relation between Lmax and a2/a for biaxial compression, b/c -0.577.

Fig. 8-1 C and C for b/c-0.577.x y

Fig. 8-2 C and C for b/c-i.x y

Fig. 8-3 C and C for b/c-i/0.8.x y

Fig. 9 Relation between C and fH for zig-zag holes with cracks, L-1.5.

Fig. 10 Relation between Cx and fH for zig-zag holes without cracks. (L-0).

Fig. 11 Relation between Cx and fH for b/c- 0.577 and 1.

Fig. 12 Stress-strain curves for uniaxial compression, b/c -1/0.8.

Fig. 13 Relation between C and f for L- 1.5.
y H

Fig. Al-I Geometry of a circular hole with edge cracks.

Fig. Al-2 Subdivision of crack for numerical evaluation of weighting

function.
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NOMENCLATURE

x, y Cartesian coordinates

z complex coordinate - x + iy

2b, 2c horizontal and vertical spacings of holes

a hole radius

f initial porosity - ra2

H 2bc

I crack length

L normalized crack length aa

Lmax maximum normalized crack length under uniaxial compression

E Young's modulus of material

a' Poisson's ratio of material

- P (plane stress), - 3 - 4v (plane strain)E

G shear modulus - E
2(1+y')

E0  E0 - E (plane stress), E0 - EV

Ex  Young's modulus of cracked porous solid;

compression in the x-direction

E Young's modulus of cracked porous solid;y

tension in the y-direction
E

C modulus reduction factor in the x-direction - -E
x 

E0
E

C modulus reduction factor in the y-direction - -Y
y E0

ax , a y, xy stress components

al , a 2  applied stresses at infinity

a0  positive reference stress

0 0
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9=- 0 2

A2  "0

A2
- x 1 (AI , 0)

1

P x Py resultant force components

u, v displacement components

U3  mean value of u along EF

v mmean value of v along FG

O(z), O(z) complex stress potentials

qm (sm) weighting functions of force doublet densities

M subdivision number for the crack

N1  number of subdivisions of EF

N2  number of subdivisions of FG

hI  length of intervals on EF - c2NI

h 2  length of intervals on FG - b
2~N 

2

KI  Mode I stress intensity factor

FI dimensionless stress intensity factor -
O( a)0

KIc critical stress intensity factor

ira)
a normalized compressive stress - KIc

-a " 1 (ra)4 EO
normalized compressive strain - Kc E

x
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10- Analytical Values
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o c/oa= 4
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CHAPTER IV

A MICROCRACK MODEL OF DILATANCY IN BRITTLE MATERIALS

by

S. Nemat-Nasser* and M. Obata**

ABSTRACT

For a solid containing preexisting flaws, overall nonlinear

constitutive relations are developed on the basis of a model which endows a

preexisting flaw with frictional and cohesive resistance, and which includes

nucleation and growth of tension cracks at the preexisting flaw, as it

deforms under the action of an overall compressive load. The preexisting

flaws may be randomly distributed or may have an initial preferential

distribution. They may be of varying sizes and orientations. Even when the

flaws are randomly distributed, their preferential activation, and the

nucleation and growth of tension cracks at preferential flaws, render the

overall response of the solid highly anisotropic. As a first step toward a

more complete constitutive micromechanical modeling, a dilute distribution

of preexisting flaws is assumed, rate constitutive relations are developed

for loading and unloading, which include hysteresis, dilatancy, and other

characteristics observed experimentally in rocks, ceramics, concrete, and

similar brittle materials. A number of illustrative examples are worked

out, and the results are compared to relevant experimental observations.

* Professor of Applied Mechanics and Engineering Sciences, University of

California, San Diego, La Jolla, CA 92093
** Postdoctoral Research Fellow, Department of Applied Mechanics and

Engineering Sciences, University of California, San Diego, La Jolla, CA

92093
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1. INTRODUCTION

Ceramics, rocks, concrete, and similar brittle materials have a highly

nonlinear and complex overall response to applied loads. This includes

load-induced anisotropy, hysteresis, dilatancy, and strongly path-dependent

stress-strain relations. Such complex behavior, to a great extent, stems

from the activation of microdefects which are commonly present in these

materials. The defects may be preexisting cracks, cavities, soft or hard

inclusions, etc. These defects serve as stress concentrators and therefore

they locally change the state of stress, leading to the formation of tension

cracks, even under overall compressive loads. It has been demonstrated

experimentally and supported by theoretical models that tension cracks of

this kind nucleate and grow in a highly preferential manner and therefore,

even when the microdefects are randomly distributed, so that initially the

solid is basically isotropic, the response of the solid becomes highly

anisotropic and stress-path-dependent as loading continues; see Horii and

Nemat-Nasser (1982). The failure modes in compression of solids of this

kind have been extensively studied and modeled analytically, as well as

illustrated by model experiments; Brace and Bombolakis (1963), McClintock

and Walsh (1963), Hoek and Bieniawski (1965), Scholz (1968), Scholz and

Kranz (1974), Zoback and Byerlee (1975), Holcomb (1978), Holzhausen (1978),

Paterson (1978), Kachanov (1982), Moss and Gupta (1982), Nemat-Nasser and

Horii (1982), Kranz (1983), and Horii and Nemat-Nasser (1985a,1986). In

particular, it has been shown by Nemat-Nasser and Horii (1982) and Horii and

Nemat-Nasser (1985a,1986) that axial splitting, often observed under

uniaxial compression, can be explained in terms of a model which considers

an isolated preexisting thin straight flaw endowed with frictional and

cohesive resistance, which nucleates tension cracks at its tips under the
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action of axial compression. The model of a sliding crack with frictional

resistance (but without cohesive resistance) has been criticized by some

authors (e.g., Holcomb and Stevens, 1980; Janach and Guex, 1980; Dey and

Wang, 1981; Costin, 1983) on the grounds that actual electron microscopic

observations do not seem to support the presence of such cracks, but rather

show a complex pattern of axial tension cracks emanating from a variety of

sources. There are, however, a number of reasons which seem to support the

usefulness of the basic model for the micromechanical constitutive

formulation of the inelastic response and the failure modes of materials of

this kind. These include: (1) The criticism of the sliding crack model has

been based on qualitative aspects of microscopic observations. (2) Recent

data by Sondergeld and Estey (1982) and Yanagidani et al. (1985), suggest

that the focal mechanism for stress induced acoustic emission involves

double couples and hence shear motion. (3) Recent quantitative stereologic

evaluation of SEN analysis of rocks by Wong (19B5) shows that the results

obtained from the sliding crack model are not in conflict with SEM

observations. Furthermore, recognizing the limitations of the model (e.g.,

two-dimensionality), Wong comments that the agreement between the

theoretical prediction and the quantitative microscopy results is quite

remarkable. (4) Recently, Scholz et al. (1986) have reexamined Bridgman's

ring experiment by subjecting a fully jacketed ring of pyrex glass tightly

fitted over a polished and hardened steel rod, to overall hydrostatic

pressure, and observed isolated axial cracks growing in a stable manner from

interior tiny flaws of no greater than 20pm. Analysis based on Nemat-Nasser

and Horii's (1982) sliding crack formulation showed that under the

prevailing all-around compressive stresses in this experiment, microflaws of

abount lOpm are sufficient to initiate such axial cracks. Scholz et al.
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(1986) conclude that "axial cracks can be initiated by tiny flaws and grow

stably for long distances under an overall compressive stress state. Thus

shear cracks or other types of stress concentrations would not necessarily

be expected to be prominent in SEM studies. In a heterogeneous material

such as rock, where stress concentrations like those we observed at the

ring-rod interface, can be expected to occur commonly at grain boundaries,

it is not surprising that axial cracking predominates." In view of these

observations, and considering the resolution limit of the SEM (about

0.02pm), criticism of the sliding crack model based on the qualitative

examination of SEM results seems to require reevaluation.

Notwithstanding the above comments, we do not intend to suggest the

sliding crack mechanism as the only source, or even the major source, of

axial cracking. (Indeed, model studies (Nemat-Nasser, 1985) have shown

microcracking under axial compression from inclusions and cavities of

various geometric shapes.) What we intend to do is to consider the sliding

crack model as a representative of a thin flaw which can deform plastically

(and hence has cohesive resistance) and can slide (and hence has frictional

resistance), and in a systematic and rigorous manner examine the results.

These results then can be used to study the merits or shortcomings of the

basic model.

To this end, we shall consider a solid which contains a dilute

distribution of such ideal flaws. The flaws may be of varying sizes and

orientations which may have either random or preferential distributions.

The matrix is assumed to be isotropically elastic. Inelasticity and

anisotropy develop because of the frictional and cohesive resistance of the

preexisting flaws, and because of the formation and growth of tension cracks
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at the tips of the flaws. During unloading, the effects of frictional

locking and the cohesive resistance of the flaws, their backsliding upon

further unloading, the partial closure of tension cracks, and finally the

residual strains are included. All calculations are made for a two-

dimensional model. Once the basic parameters of the model are defined, then

the problem is analyzed consistently and systematically, without introducing

additional assumptions. This allows us to make a judgment on the merits of

the model from the obtained results which are then a true reflection of the

basic model's assumptions.

2. FORMULATION

We consider a micromechanical modeling of the inelastic response of

brittle materials such as ceramics and rocks at relatively low temperatures

and under moderate confining pressures so that: (1) rate effects can be

ignored; and (2) micro-cracking and inelastic slip at preexisting flaws can

be regarded as the basic micromechanisms giving rise to inelasticity; for

rather detailed discussions and extensive lists of relevant references, see

Paterson (1978), Kranz (1983), and Horii and Nemat-Nasser (1986). The basic

building block of the model is the mechanism shown in Fig. 1. It consists

of an isolated preexisting flaw PP' and tension cracks PQ and P'Q' embedded

in an isotropically elastic unbounded solid. Under the action of farfield

compressive stresses, the preexisting flaw PP' undergoes frictional sliding

which may be accompanied by cohesive (due to possible plastic deformation of

the flaw) resistance as well as, possibly, dilatancy normal to PP', due to

the deformation of the flaw and the possible presence of asperities. The

relative deformation of the two faces of the flaw results in the creation of

high tensile fields at the flaw's tips and leads to the formation of tension

cracks which grow toward the direction of maximum compression. The model of
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frictional sliding of preexisting cracks (without cohesion or dilatancy)

which leads to the formation of tension cracks at its tips was originally

suggested by Brace and Bombolakis (1963) and has been studied both by model

experiments and analytically by a number of investigators; McClintock and

Walsh (1963), Holzhauzen (1978), Moss and Gupta (1982), Kachanov (1982),

Nemat-Nasser and Horii (1982), Horii and Nemat-Nasser (1985a,b,1986), and

Steif (1984). Although micromechanical observations on actual rocks have

not clearly identified preexisting cracks as the basic source of

inelasticity in rocks, recent analysis by Wong (1985) seems to suggest that

the model is indeed viable and does capture both qualitatively and

quantitatively some of the main features of the problem.

In this section we shall calculate the inelastic strain due to: (1)

slip along the preexisting flaw, (2) dilatancy normal to the flaw, and (3)

the associated out-of-plane tension cracks at the tips of the flaw. (2TA

dilatancy normal to the flaw will be assumed to be very small, but its

effect on creating tension cracks at the tips of the flaw is significant.

The total strain at each state depends on the parameters that define

the basic model shown in Fig. 1. The values of these parameters are highly

stress-path-dependent. Hence, an incremental solution is necessary. Using

the computed strain tensor, we formulate a rate-constitutive relation, using

the equilibrium conditions for a representative flaw and the associated

tension cracks.

Throughout this paper we shall use a fixed rectangular Cartesian

coordinate system, xl, x2 , as the background frame of reference. To

simplify notation, we use the following direct representation:
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a:b - aijbj,

L:b - Ljjklbk1,

a~b - aijbkl, i,j,k,l - 1,2,

where repeated indices are summed.

2.1 Description of Strain

The total strain consists of an elastic strain due to the elastic

deformation of the matrix, plus an inelastic strain due to slip and

dilatancy of the preexisting flaws, accompanied by inelastic strain due to

micro-cracking. In the sequel all physical quantities with the dimension of

length are normalized by dividing by half of the preexisting flaw length, c.

For example, if b is the slip (assumed constant) along flaw PP', we use

b - b/c to represent the dimensionless slip. Similarly, if d is the

displacement (assumed constant over the flaw length) of a flaw normal to its

face, we use d - d/c.

Let

f - c2N (2.2)

represent the density of the flaws of length 2c and orientation 0, where N

is the number of such flaws per unit area. The strain due only to slip b of

these flaws then is

!b 2fbpo, (2.3a)

where

I -sin 20 cos 24(1
EO 2 cos 24 sin 24. (2.3b)
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Similarly, the strain due to dilatancy d normal to PP' is given by

d- 2fdE1  (2.4a)

where

cos 2
0 cos Osin 4 24Ei - cos Osin 4 sin 2  ' (2.4b)

see Appendix A. Since the sliding-induced opening of a preexisting flaw

normal to the surface must be bounded, we shall assume that this opening

becomes saturated and hence use

d - d0(l - e' b). (2.5)

Note that b (and hence d) is assumed to be uniform along the flaw. This

simplification is reasonable once tension cracks are suitably long.

Slip b and dilatancy d introduce normal and tangential concentrated

gaps of values (b sin 0 + d cos 9) and (b cos 9 - d sin 0), at points P and

P', for cracks PQ and P'Q', of common length 2, and orientation 0 with

respect to the preexisting flaw PP'. The strain associated with these gaps

can be computed and is given by

C- fb2qo + fdlql, (2.6a)

where

1 [ -2sin Ocos(O + 4) cos(9 + 24) 1
30 2 cos(O + 24) 2cos Osin(O + 4)J' (2.6b)

I- 2cos cos(O + 4) sin(9 + 24) (2.6c)

31 -2 sin( + 24) 2sin Osin(O + )(

see Appendix B.
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The applied stresses change the crack opening displacement. This is

not included in expression (2.6a). Under the condition of a positive Mode I

stress intensity factor at Q and Q' (crack closure will be considered later

on), i.e., for K1 > 0, the strain due to the change in crack opening caused

by the applied loads can be computed and is given as follows:

,rIf - V W
2 [4(a:a)a + (a:P)P], (2.7a)

.81

where

cos 2 (e + 4) cos(O + 4)sin(0 + 4) 1(27b)
-" sin(O + 4)cos(O + 4) sin 2 (8 + 0) (7"

8Q -sin2(0 + 4) cos2(0 + 4) 1 (2.7c)
80 cos2(6 + 4) sin2(8 + 4)

see Appendix C. In (2.7a), p is the shear modulus, v is Poisson's ratio,

and a is the stress tensor.

With L denoting the elastic modulus tensor of the matrix material, the

total strain tensor is now given by

z - 1:

+ 2fbpo + 2fdpl

+ fblqo + fdlq1  
(2.8)

+ f l - + (a:r)a].

2.2 Rate Constitutive Relations

VTo complete the formulation, we must relate the kinematic parameters b,

_,

d, I and 8 to the applied stress a. We shall do this by calculating the

opening mode stress intensity factor, KI, at crack tips Q and Q' in two
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different ways: (1) by considering the applied loads and the condition of

slip across the flaw (see Fig. 2a), as discussed by Horii and Nemat-

Nasser (1986), and (2) by calculating the stress intensity factor in the

presence of the applied stress and the imposed concentrated gaps at P and

P' (see Fig. 2b).

As has been shown and verified by numerical examples by Horii and

Nemat-Nasser (1986), the Mode I stress intensity factor at Q and Q' of

cracks PQ and P'Q' can be computed with very good accuracy by considering an

equivalent crack of length 21, subjected to a pair of colinear concentrated

forces, F, as well as the applied overall stresses, as shown in Fig. 2. In

this representation, F denotes the driving force transmitted across the

preexisting flaw; it lies along the flaw and equals in magnitude the

resultant force transmitted across the flaw. Following the procedure

outlined by Horii and Nemat-Nasser (1986), we obtain

2

KI - '(2 + 1*) (o:E2 - T0 )sin 0 + a:a.irl, (2.9a)

where

* - 0 27 a -I

22 " Ro + P - 0.27, r - e IbI - ftlbldt. (2.9b-d)

Here, -A is the coefficient of friction, Tc is the value of cohesion at the

current value of the total absolute value of slip (we shall assume that

cohesion is an exponentially decaying function of the accumulated slip with

decaying factor q defined by (2.9d)), and rO is the initial cohesion. The

parameter 1* is introduced in such a manner that (2.9a) is valid even at

crack initiation, i.e., at I - 0+. Since the opening mode stress ittensity

factor for a closed sliding crack is maximum in a diection which makes an

angle 8c - 0.39x with the crack orientation, 1* is obtained by equating the
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stress intensity factor given by (2.9a) at I - 0 and 0 - 0 to that maximum

value. In the present application the effect of tension cracks is important

once they become relatively long. Hence, whether or not 2* is included in

Eq. (2.9a) does not affect the results, although its presence renders KI

non-singular at I - 0.

The Mode I stress intensity factor associated with the gaps and in the

presence of applied stresses, on the other hand, is given by

KI 1A irl

1 - . J2ir( + "*) (b sin 0 + d cos 0) + (2.10a)

where

32 (2.10b)

32

see Appendix D.

To obtain a relation between b and a, we require

KI - KIP when -:E2 c : 0. (2.11)

Furthermore the crack length I is obtained such that

KI - Kc, (2.12)

where Kc is the critical value of the stress intensity factor in the opening

mode. 0 is determined so as to maximize KI for a given length A.

VIt should be noted that model experiments (Nemat-Nasser and Horii,

1982) and exact analysis (Horii and Nemat-Nasser, 1983, 1985a) show that

tension cracks emanate from the flaw tips at an angle of about 700 with

respect to the orientation of the flaw, and curve toward the direction of

the maximum compression. The model shown in Fig. I substitutes the curved
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crack by an equivalent straight one; the equivalence is in the sense that

the orientation 8 of the equivalent straight crack is computed at each

incremental loading by maximizing K, with respect to 0.

Because of the complex and nonlinear relations that exist among various

parameters which defined the basic model shown in Fig. 1, the overall

stress-strain relation will be highly nonlinear and stress-path-dependent.

- It is therefore necessary to formulate the problem incrementally. To this

end we will express 1, b, and b, in terms of 6, for given loading regimes.

These quantities can be written symbolically as

- A:!, e - B:&, b - C:6. (2.13a-c)

We will calculate the second-order tensors A, B, and C for prescribed

loading regimes. Note that, in view of assumption (2.5), we have

d - (d0  d)b. (2.14)

-i With Eqs. (2.13) and (2.14), and upon time differentiation of (2.8), we

obtain the following rate constitutive equation:

D -1

+ f(bqo + dq, + 1 V ir[4(a:a)a + (a:#)R]}®A

0, ij - -
f(blro + d~cr1  1-V, '.j2[4(a p~ + 4(a:a; + a7p+(: j

- 8ju - - - - - .- +. . . . .

+ f(2po + 1o + (do - d)(22, + Iq1)}C

+ flI- V 7r 2 [4a~a + 00,6]

where
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7 a,'- - a7' r - 89- (2.15b-d)

2.3 Specific Cases During Loading

In what follows, we consider various loading cases separately. We

shall use a symbolic representation, and give the details of expressions

such as K1/ab and b1 in Appendices E and F.

(i) Sliding occurs without crack growth: This happens when the driving

shear stress on the flaw exceeds the frictional and cohesive resistance of

the flaw, i.e., when a:22 - r 0, while K, < K,. From condition K, - KI' ,

we obtain, by time differentiation,

-b- a J -" (b1 - b2): , (2.16)

where b, and b2 are the matrix coefficients of obtained from (2.9a) and

from (2.10a), respectively. Thus we have

* - 1
aKb aK , (bl - b2):&, (2.17)
8Kb- -8b 8b

and, hence,

1 , (b - b2), A - 0, B - 0. (2.18a-c)

8b 8b

(ii) Sliding occurs with crack growth: This happens when K, - Kc and

!:E2 - ? 0. The problem can be stated as follows: Maximize K, with

respect to 0 and b under the condition that K, - K{. With the aid of a

Lagrangian multiplier, we arrive at the following conditions:
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I | ~I KI Ke i i

i__ K1 - K -K ,

(2.19a,b)
8K1 aK 8KaK'

-- - -J-0.
89 8b 8b 89

Time differentiation yields,

8K. j 8KI  8KI  b-1x +- +- -6
al 80 ab

- 8KI '. 8KI . 8KI .
-I +-' +-b - b:- (2.20a-c)81 89 8b b6

81j j 89 8 b 3: 6r

These linear equations yield 1, 9, and b. The solution is in the form

(2.13).

2.4 Specific Cases During Unloading

After a continued loading regime, we consider unloading by reducing the

applied stresses. Unloading at specific flaws may also take place when, for

example, we change the load path. Our analysis of unloading includes all

cases when the net shear traction, a:22 - rc, transmitted across a

preexisting flaw decreases for whatever reason.

(i) Crack grows without sliding: Upon unloading, cracks may continue to

grow as the lateral compression is reduced but, because of an initial

locking of the flaw, the maximum gaps at P and P' remain fixed. The

conditions for crack growth then are

KI' - Kc' aK- - 0. (2.21a,b)

Equation (2.21b) ensures that cracks grow in a direction which maximizes

K,'. Time differentiation now yields
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8K 8K, -

(2. 23a-b)a Kj' • a .aKi' a

From these we have I and i in the form (2.13). Since b remains fixed, in

this case b - 0, and hence C - 0.

(ii) Backsliding occurs without crack closure: When the residual shear

stress on the preexisting flaw overcomes the cohesive and frictional

resistance, backsliding of the flaw may take place. Since the frictional

and cohesive resistance on the preexisting flaw acts against the direction

of the relative displacement, K, in (2.9a) must be redefined for the

unloading case by

2

K1 - /i(1 + 2*) (a:p2 + Tr)sin 8 + a:a.j/w, (2.24a)

P2 -0 PEI- (2.24b)

Before backsliding takes place, KI of (2.24a) may formally be larger than

the actual stress intensity factor KI obtained on the basis of the applied

overall loads and the existing gaps at P and P'. This is similar to the

loading case with a:R2 - Tc : 0, so that no slip occurs. The quantity KI ,

defined by (2.24a), attains its usual physical meaning only when backsliding

occurs, or is just about to occur. Therefore, the condition for the

initiation of backsliding is given by

K, KI; (2.25)

see Appendix G. During backsliding, however, we require that

K1 - K.

(2.26)
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Upon time differentiation at fixed I and 8 we obtain an equation similar to

(2.17) for b.

(iii) Crack closure without backsliding: When crack closure occurs, the

strain tensor is given by

c- L-:a

+ 2fbEo + 2fdEj

f 1 A v (:c) (b sin 9 + d cos 9)
2
a (2.27)

+ f- (b cos 8 - d sin 0)p

" f 1 ,j_2 (a:p)#,

where IM denotes the maximum crack length; see Appendix H. From the time

differentiation of (2.27) and Eqs. (2.13), we obtain the rate consti uIV

equation for this special case in the following explicit form:

i D:&,

D L-1

+ f [2Ro + 2'(d o -d)p

L 1 (sin 0 + (d0 - d)cos 0)(b sin 0 + d cos( 28
ir 1 - v a:a

+I- (cos - (d0 - d)sin #)P] ®C

+" f 1 v (a:a) (b sin 8 + d cos 6) 2 aea + 1- wA2 B® B.

Note that 8 is fixed in this case.

The condition for crack closure without backsliding of the flaw is
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Kj' - 0,

whose time differentiation at constant e and b yields
8Kx '

(b2:60/ (- -) - A:, B - C - 0. (2.30a-c)

(iv) Crack closure with backsliding: The conditions are

K1 - Kx' - 0. (2.32a,b)

Since 8 remains constant during crack closure, only A and b must be

expressed in terms of &. This is done by time differentiation of KI - 0 and

K1 ' - 0 at constant 0 and by solving the resulting linear equations for

and b. B - 0 because 8 remains constant.

2.4 Comments on the Model

The model presented above includes a number of features which have been

suggested by several researchers in the past, e.g. Brace and

Bombolakis (1963), Zoback and Byerlee (1975), Kachanov (1982), and Moss and

Gupta (1982). In particular, Moss and Gupta have obtained nonlinear

stress-strain and dilatancy relations based on a sliding preexisting crack

with tension cracks (wing cracks) emanating from its tips. These authors

include frictional and cohesive effects, and calculate the inelastic strain

associated with the slip of the preexisting crack as well as of the tension

cracks. In their model, however, the orientation of the tension cracks

(wings) relative to the preexisting crack is fixed throughout the entire

loading history and must be prescribed. Moreover, in their model it is

necessary to prescribe an initial length and crack opening displacement for

the wings. In the model presented here, the flaws at which tension cracks

nucleate, the orientation and the length of the tension cracks, their
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opening displacement, and whether they continue to grow, become dormant, or

actually close, are all obtained as part of the solution to the problem and,

indeed, change during the course of loading and unloading, in a rather

complex manner. Indeed, in our model the tension cracks may continue to

grow at a state of unloading, because of the locking of the preexisting

flaw, as illustrated in the examples given in Sec. 4. Furthermore, we have

attempted to render the model self-consistent in the sense that the stress

intensity factors at the tips of the tension cracks are obtained on the

basis of the existing gap (created due to the sliding of the preexisting

flaw) and in the presence of farfield loads, and these are then made to

correspond to the stress intensity factors calculated on the basis of the

applied loads and the effective total force transmitted across the

preexisting flaw. In the model of Moss and Gupta, the stress intensity

factors are calculated only on the basis of the applied loads and the

effective force across the preexisting crack. We note that if the

preexisting flaw is locked, then the stress intensity factors must be

computed on the basis of the existing gaps and the applied loads, and these

stress intensity factors may not be equal to the ones calculated on the

basis of the applied loads and the effective force across the preexisting

flaw, when the flaw remains dormant.

3. AVERAGE QUANTITIES

So far, the problem has been formulated for flaws of fixed orientation

0 and size 2c. When a dilute distribution of preexisting flaws is involved,

the interaction effects may be neglected, and the overall strains and strain

rates may be estimated by a simple average of the individual contributions.

To this end let N - N(O) be the number of flaws of orientation and size 2c

per unit area. Hence, f - c2N is given as a function of 0. The average
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strain, 7, then may be computed from

7 j (O,f(O))dO, (3.1)

where (o,f(o)) is given, in our analysis, by (2.8) or by (2.27). A similar

expression can be written for the average strain rate. When a finite number

of specific orientations of preexisting flaws is involved, the integral in

(3.1) reduces to a finite sum,

M
- 1  (3.2)- - X £( ,f( )),(.2

CV-i

where M is the total number of involved orientations.

In the formulation presented above and in the preceding section, no

attempt is made to include interaction among neighboring flaws and their

associated cracks. There are a number of possible ways that this

interaction may be included. Perhaps the most effective way would be to

estimate the stress intensity factors at the crack tips by considering

several interacting flaws or an infinite row of such flaws, in the manner

discussed by Horii and Nemat-Nasser (1983, 1985a,b, 1986). This poses an

extremely complex mathematical problem where, although solvable as shown by

Horii and Nemat-Nasser (1985b), the resulting equations are so involved that

they do not lend themselves to simple analytic calculations of the kind

given in the present paper.

An alternative approach is to consider an averaging technique similar

to the self-consistent scheme; see Budiansky (1965) and Hill (1965). This

would require the solution of the problem of out-of-plane crack growth from

a preexisting flaw embedded in a linearly elastic but anisotropic material,

which currently is not available. Therefore, any improvement on the simple
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averaging procedure given by (3.1) seems to require either extensive and

complicated computations beyond the scope of the present work or it must be

based on additional simplifying assumptions, which is not our intention at

this time.

In the following section we shall assume a dilute distribution of

preexisting flaws, use the simple averaging given by (3.2), and present a

number of illustrative examples.

4. RESULTS AND DISCUSSIONS

In this section, we shall illustrate the predictive capability of the

model presented in the preceding section, in terms of several numerical

examples, and discuss the results.

The basic parameters of the model are:

1) f - c 2N which represents the density and the size of the flaws. It can

be given any suitable distribution in terms of the flaw orientation 4.

In our examples we shall assume it to be constant.

2) M0 which is the number of flaw orientations between 00 and 900. In our

examples we shall assume an isotropic initial flaw distribution, and

therefore use finite, equally spaced orientations between 00 and 900.

3) KC - Kc/(r jc) which is the dimensionless critical value of the stress

intensity factor. Since typical values of fracture toughness, K., for

rocks are of the order of 105 - 106 Nm-3/2, taking a typical flaw length

to be of the order of 10-4m, and the cohesive stress to be of the order

of J0 Nm -2 , we estimate Kc to be of the order of 1.

44) do which represents the limiting maximum flaw expansion (dilatancy)

normal to its face; see Eq. (2.5). It is nondimensionalized using half

the flaw length c. It is also normalized by dividing by rO/M. Hence,
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do - I, for example, represents an actual maximum possible flaw expansion

of 0.5% of half the flaw length c when rO/p - 5.0 x 10 .

5) which is the coefficient of the exponential saturation of the flaw

dilatancy with respect to the flaw slip. Since we normalize the slip

b (and the dilatancy d) by measuring it in units of rO/p, ( (and q in

item 6 below) is measured in units of u/rO which is of the order of

102 - 103, a rather large dimensionless number. For all examples, we use

- 1; hence, full flaw expansion is attained at flaw slips of less than

1% of the flaw length.

6) n which is the coefficient of the exponential decay of the rate of

I" cohesive resistance of the preexisting flaw.

7) ; which is the coefficient of internal friction possibly having a value

between 0 and 1.

8) Y which is the Poisson ratio of the elastic matrix. In actual cases, V

should be interpreted as the average overall Poisson ratio of a solid

with microdefects.

For the examples displayed in Figs. 3-6, we have used f - 0.3, M0 - 10,

a - 0.25, [ - 1.0, and, unless otherwise indicated explicitly, Kr - 1.0,

do - 0.05, , - 0.05, and p - 0.30. In these figures, stresses are

normalized by r and strains by (rc/p).

Figures 3a and b show typical responses in uniaxial compression. In

Fig. 3a the normalized overall volumetric strain and in Fig. 3b the

normalized overall axial compressive strain are plotted on the horizontal

axis in terms of the normalized compression as ordinate. As is common in

the rock mechanics literature, compres: ion and contraction are viewed as

positive. Up to point A, the overall response is linearly elastic, because

the local stresses acting on the preexisting flaws are not as yet large
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enough to activate these flaws. At point A, frictional sliding initiates on

some flaws, and at point B, cracks nucleate at some suitably oriented flaws.

Upon further loading, tension cracks begin to grow, leading to substantial

dilatancy which quickly offsets the elastic volumetric contraction, leading

to overall volumetric expansion as the axial compressive load is further

increased; see Fig. 3a.

The stress-strain relation shown in Fig. 3b remains monotonic in

uniaxial loading, and closely resembles the experimentally observed behavior

of rocks; see, e.g., Brace and Bombolakis (1963). In the presence of

lateral tension, however, the curve would terminate at a point when a most

critical tension crack begins to grow in the axial direction in an unstable

manner, leading to axial splitting; see Nemat-Nasser and Horii (1982). In

the presence of lateral compression, the stress-strain curve remains

monotonic and no failure is predicted by this model because the interaction

effects among neighboring flaws are not incorporated in the present model.

As has been shown by Horii and Nemat-Nasser (1985a,1986), the interaction

among a row of suitably oriented preexisting flaws can lead to the formation

of a fault, as tension cracks nucleate at these flaws and grow in an

unstable manner. The analytical computations associated with such a model

of faulting are rather complex and therefore considerable simplification is

necessary before such a failure model can be incorporated into a

micromechanically based constitutive relation of the kind developed in the

preceding section. The present constitutive model, therefore, is not

suitable for such loading regimes.

At point C in Figs. 3a and b, unloading has been initiated. The

response from C to D is linearly elastic. However, the material is slightly
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more compliant, since microcracking has led to certain stiffness

degradation. The difference between the elastic moduli at initial loading

and at unloading from point C is rather small in the axial direction, but it

is considerable for lateral tension (but not for lateral compression). This

is because during axial compression, cracks grow essentially in the axial

direction, and such cracks do not influence much the axial stiffness of the

material, but they do have considerable weakening effect for lateral

tension.

The instantaneous compliances at several states during the course of a

monotonic axial compression and of unloading are given in Table 1. As is

seen, strong anisotropy develops due to slip and microcracking.

From point C to point D in Figs. 3a and b, all the flaws are locked and

all the tension cracks remain open. Backsliding of some preexisting flaws

initiates at point D. In addition, some tension cracks grow before being

dormant. Considerable volumetric contraction begins to occur after this

state. In this example, no crack closure occurs during the entire unloading

process which leads to point E corresponding to some permanent total

volumetric expansion. This type of response has been inferred by Scholz and

Kranz (1974) on the basis of experimental observations.

In Figs. 4, we show examples of loading-path-dependency. Fig. 4a shows

the stress-strain curves for two different loading paths defined in Fig. 4b.

On path I, uniaxial compression is applied until point A, producing slip and

microcracks at some preexisting flaws. Then, with axial compression held

fixed, the lateral compressive stress is applied up to point C. During this

regime, no further slip occurs on any flaws because the driving shear

stresses on the flaws actually decrease, but not enough to initiate
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backsliding. At point B, closure of some tension cracks begins.

Path II, on the other hand, defines a proportional loading directly to

point C'. Unlike for the path I loading, for path II no slip is activated.

The response, therefore, is linearly elastic. The microstructures of the

material for points C and C' are quite different.

Our model includes a number of important parameters, and we now proceed

to examine their effects on the model's predictions. These parameters are

listed at the beginning of this section. Except for ,q, and do, they all

have rather clear physical significance, and therefore their values may be

estimated on the basis of experimental observations. The parameter do

represents maximum expansion (due to asperities or other effects) that the

flaw itself can undergo because of sliding. The parameters and t?

represent the rate at which flaw expansion saturates and the rate at which

the cohesive resistance of the flaw decays, both measured per unit rate of

sliding. These parameters have a rather significant influence on the

'V overall volumetric response predicted by the model.
V

Figures 5 and 6 show the effect of q and of do in uniaxial compression,

followed by unloading. As pointed out before, when (rO/p) - 5.0 x 10-3 ,

do - I represents an actual maximum limiting flaw expansion normal to its

surface of only 0.5% of half the total flaw length, and hence it is small.

Nevertheless, it has a rather significant influence on the response
* ~55predicted by the model.

The influence of internal friction -A and the normalized fracture

toughness Kc on the dilatancy in uniaxial compression followed by unloading

is depicted in Figs. 7 and 8, respectively. As one would expect, a greater
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dilatancy results at lower frictional resistance of the flaws and lower

fracture toughness of the matrix material. It should be noted that there is

a considerable difference between the effects of the frictional parameter -,

and the normalized fracture toughness K. on the overall response: whereas

the friction coefficient -i affects the flaw response during the entire

loading and unloading regime, K.'s influence emerges only with tension crack

initiation. Note also that normalized KC involves the flaw size 2c and the

cohesive stress rl, as well as the actual fracture toughness of the

surrounding material. Therefore, while the order of magnitude of Kc can be

estimated on the basis of experimental observations, its actual value

involves quantities that are difficult to measure. For example, the

fracture toughness should actually reflect the behavior of aggregates of

crystals involving a variety of preexisting defects in a rock or ceramic

sample.

As a final illustration, we seek to fit the model to experimental

results reported by Zoback and Byerlee (1975). Since actual rocks contain

preexisting open cracks and pores which tend to close upon application of

loads, the initial stress-strain relations often reported are considerably

softer than the subsequent response. We have not included this in our

calculations, although it can easily be done, as detailed by Horii and

Nemat-Nasser (1982). Therefore, we do not seek to match the initial portion

of the stress-strain curves, but only compare their overall shapes. To

offset the initial soft response, we simply shift the model's prediction, as

shown in Figs. 9a and b.

Since the model is a two-dimensional one, whereas the experimental

results are for uniaxial compression of a cylindrical sample, a certain

I" - 4~7 -

MN



amount of adjustment in the model parameters is required. The reported flaw

size 2c is of the order 4 - 8 X 10-4 , and taking f - N(c/V)3 - 0.2, for the

two-dimensional case we choose f - (0.2)2/3 - 0.34. The Poisson ratio and

the shear modulus are estimated to be v - 0.35 and p - 2.1 x 104 MNm-2,

based on the data reported by Zoback and Byerlee (1975). In addition, we

take KC - 0.7 MNm-3/2, TO - 21 MNm-2, and set 2c - 5.0 x 10- 4m (therefore,

KC - 2.1). The coefficient of friction is taken as - - 0.1, which is rather

small, but may be justified on the grounds that many of the flaws seem to

have been initially open and therefore their frictional resistance ought to

be small. Considering the simplicity of the model, the fit shown in Figs.

9a and b is rather good. Nevertheless, in view of the number of free

parameters involved, the comparison should be regarded as an illustration

and not necessarily a direct support of the viablity of the model.

In summary, it may be concluded that the micromechanical model

consisting of preexisting flaws, with frictional and cohesive resistance to

sliding, and capable of nucleating tension cracks, seems to capture a number

of important features observed in the response of brittle materials with

microdefects. The model presented here does not include the important

interaction effects among neighboring flaws. Judging from results reported

by Horii and Nemat-Nasser (1986) on the failure in compression of materials

of this kind under moderate and large confining pressures, we feel that

constitutive modeling based on the mechanisms considered by these authors

4' should prove to be effective.
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Figure Captions

Figure 1: An isolated preexisting flaw PP' with tension cracks P'Q' and
PQ.

Figure 2: (a) An equivalent isolated crack with a pair of colinear
concentrated forces applied at its center. (b) An equivalent
isolated crack with concentrated gap at its end.

Figure 3: (a) Volumetric strain versus differential stress curve for a
loading and unloading loop. (b) Axial strain versus stress
curve for a loading and unloading loop; f - 0.3, M0 - 10,
i - 0.25, j - 0.3, Kr - 1.0, do - 0.05, and , - 0.05.

Figure 4: (a) Axial strain versus differential stress for different
loading paths; f - 0.3, Mo - 10, P - 0.25, i - 0.3, do - 0,
Kc - 1.0, and " - 0.05. (b) Loading paths.

Figure 5: Volumetric strain versus differential stress curves for various
q ; f - 0.3, M0 - 10, Y - 0.25, -i - 0.3, do - 0, and Kc - 1.0.

Figure 6: Volumetric strain versus differential stress curves for various
do; f - 0.3, Ho - 10, v - 0.25, j! - 0.3, Kc - 1.0, and q - 0.05.

Figure 7: Volumetric strain versus differential stress curves for variousI ; f - 0.3, M0 - 10, &i-0.25, K0 - 1.0, do - 0.05, and
- 0.05.

Figure 8: Volumetric strain versus differential stress curves for various
KC; f - 0.3, M0 - 10, v-0.25, j - 0. 3, do - 0.05, and
n - 0.05.

Figure 9: Comparison with experimental data reported by Zoback and
Byerlee (1975): (a) Volumetric strain versus differential stress
curve. (b) Axial strain versus differential stress curve;
f - 0.35, M0 - 10, v - 0.35, ;! - 0.1, K0 - 2.1, do - 0, -0.

- 2.1 x 1010 Nm-2 , and rO - 2.1 x 107 Nm "2 .
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APPENDIX A: Strains Due to Crack Opening

The strain due to the crack opening displacement is given by

C 1 N f ni[uj] + nj[ui] ds, (A.)
-C

where V is the volume, N is the number of cracks in this volume, n is a unit

vector normal to a crack surface, and [uj] is the i-th component of the

crack opening displacement. From this, the inelastic strain due to crack

slip is computed as follows. In a local coordinate system with the crack on

the x-axis,

E12 - '21 -- i [u,]dx b-c - fb,
Vj V0 (A.2)

41 - :22 - 0, b - b/c.

Transformation to the global coordinate system is made with the following

matrix:

cos 4 sin (A.3)T -sin Cos '(A3

where 4 is the angle between the local and global xl-axis. By use of this

matrix, we have

lb-2fb' 1 sin 20 cos 20 (A.4)
- 2 cos 20 sin 20

in the global coordinate system.

For the Mode I crack displacement, we have

- 2 x-f- [ul]dx - 2fd, (A.5)

in the local coordinates, and
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id-2fd C 20 cos Osin 0 (A.6)
Icos Osin 0 sin 2o

in the global coordinates.
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APPENDIX B: Strains Due to a Dislocated Crack

First, we examine the Mode I crack displacement. Consider an array of

edge dislocations continuously distributed along -a < x2 < a, x i - 0; see

Fig. B.l. The corresponding normal stress is (see, e.g., Muskhelishvili,

1953).

1 (x 2,O) - 2 i -w- - X2

and the displacement in the xj-direction on the x2-axis is given by

'X2
ul(O,x2 ) - g(x2 ) - -J Bj(e)de, (B.2)

where B1(x2) is the dislocation density. Since crack surfaces are

traction-free, with the farfield stresses applied, the following integral

equation defines the dislocation density:

a Bi(-) d + p(x2 ) - 0, -a < x2 < a, (B.3)

27t. 11 f-a e -X

where p(x 2 ) is the traction on the x2-axis due to farfield stress.

A solution of (B.3) singular at x2 - ±a is given by ke.g.,

Muskhelishvili, 1953)

1 1 1-2 v a -  p(e)de + C}, (B.4)
B1 (x2 ) - - 2 a2 (2i e - X2

where C is a constant yet to be determined by another boundary condition.

In this case, the farfield stress is zero, but the crack is dislocated at

X 2 - a,

p(x 2 ) - 0, [u,](a) - gj. (B.5)

From (B.2), (B.4), and (B.5), we have
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g91 . (B. 6)
i BIxD ./a2- x

Note that the condition [ul] - 0 for -a > x2 is automatically satisfied by

this array of dislocations. Substituting (B.6) into (B.1), we obtain the

normal stresses on x, - 0,

0) 1  sgn(X2)
2 11(x2 I1 j x2x2-a2 H(Ix 2 1 - a), (B.7)

where H(x) is the Heaviside step function. The stress intensity factor at

x2 - -a now is

l '__ (B.8)KI -2 1 - L, jira

From (B.2),(B.5), and (A.1), we compute the strain components in the local

coordinate system as follows:

e11 - gla,

(B.9)
f12 - t21 - -22 - 0.

Note that both g, and a are dimensionless; see Appendix A.

Now consider the Mode II crack displacement. If the concentrated gap

at x2 - a is denoted by g2 , we obtain

, 1
' "2 -.2g 2a

-  (B.10)

In our particular problem,

g1 - b sin 0 + d cos 0,

92 - b cos 9 - d sin 9, (B.11)

Ia 2
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Thus, considering that we have a pair of dislocated cracks, the strain

components in the local coordinate system are given by

f bI 2in 9 cos9 0 fcosO 0 sin ] (B.12)

The transformation to the global coordinate system is made with

T- cos (8 +) sin (8 +)] (B.13)

[ sin (9 +-# cos (0 +)

and we obtain

-c-ff 2sin Ocos(O + 0) cos(O + 20) 1
2cos(9 + 240) 2cos Osin( O + ,) ( . 4

2 sin(O + 24,) 2sin 4,sin(O + 4,)

in the global coordinate system.

-156-

4N' ~ p



APPENDIX C: Strains Due to Crack Displacement Caused by Applied Stresses

Under the farfield stresses T and S, the crack opening displacements

are given by

1-,
- i 2T 1-vJ(1/2)2-_2[u] - 2T,~2

(C.1)

[u2 ] - 2S .- 1

In our particular problem, T - a:a and S - a:,/2. Therefore, after

integrating, the strains in the local coordinate system are expressed as

a fl u2 1 (C.2)

Using (B.11), we have the expression in the global coordinate system,

!a " f  8 r2 [4(a:a)a + (a:#)P]. (C.3)
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APPENDIX D: Stress Intensity Factor of a Dislocated Crack

Consider the case where the crack opening displacement normal to the

flaw is zero. By use of (B.8), the Mode I stress intensity factor of a

dislocated crack of length I is obtained to be

-i 1 b +a:ajIt(D1
K' i- V 72*- - Z 2

Since this expression is singular when I - 0, we replace it by the following

non-singular form

KI' "( b + :a J , (D.2)

and seek to estimate 1** such that at I - 0+ , K - K1 . When R - 0, the

average slip of the preexisting flaw equals the average Mode II crack

displacement, and is given by

2J 2(a22 7r) l V Jc-2 x2 dx 2 I rc(a:E 2 -(D,)2c I- 2
-c

On the other hand, when I - 0, (2.9a) reduces to

2
KI - - (-- - rc) sin 0, (D.4)

which is maximum at 0 - w/2. From (D.2), (D.3), and (D.4) with 0 - r/2, 1**

is determined to be

J** _ 7r2 (D.5)

We simply generalize this result when dilatancy d is included. The final

form of KI' then is

Kz' - 1 (b sin 0 + d cos 0) + c:aJ-. (D.6)
+ 1 8 -
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APPENDIX E: Some Basic Equations in Loading

Mi__ w [ _ _ _ 11

al 2 + 1*fl 3 /2  
-R Crsn9- ~ ~

8K1  2 (a':E2 - cos) CO + a-,8 c l

8K1  2y7 rc sin 0,

8.1 T 1 - v (21r(l + 1**) )3/2 8 Tdco7) rol

(b1  7S 2 (bd sin 0 :.--

88 -V 27r(.e + 1** ( o i )+cG 2

-1 (sin 0 + (do - d) cos 6),
8b 1 Vl .2r1+ 1**)

83 8 8K1  8K1 ' + K1 a OKIP a K1  aK 1' K I 8KIP
8la18 b a 81 al ab a a a

83 8 8K1  8K1 ' 8K1 8 8KIP OK, aK' OK, 8KIP)

83 8 ±K1  OK1 ' aK1 8 K1 ' a OK1  aK 1' IK OKIP
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8 8K in (aE2 rd COS or:T~
_2 (7{r(I + 2*))3/2 4 7J

a~~~ -in7 
sn0ab (7r (I + j*) )3/2

8 OK' i 2 -(b cos 9 -d sin 9) a:~,/2r21
_ i T 3 2[i1L (27r(R + j**fl)

3
/
2  2r

a 1  (i( 2 -(si 6 + (do - d)cos 0),

:1 T ( oK1 - + 2 (a : P2  - T) sin 9 + a:' ll

a 8K1  2q T cCOS6
a8 ./,( + )

a OK1' -- 1 (b sin 6 + d cos 6) + a:-y,/--
ag ~ o 1 J2ir(l + 1**)2

a aKI' - 1 (COS 6 - (o- d) sin 6),
a81 A 1 l27r(I + 1**)

a 8K1  - 212 rSif 9,
-b ab/ir(l + r*)
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~ 8K 1 ' -(do - d) cos 0,
ab-a 1- L' 2ir(I+ **)

2P sin 0 a il
j + I*)

13 -A (sini1 0 + -(d d)cos 0)

x 2 2 cos 0+ 0 Iir1
+j)

+ ,/r( + 1*) 2
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APPENDIX F: Some Basic Equations in Unloading

In the case of unloading,

the following quantities are different from those of

the loading case:

8KI 2 11
2 1 W(j + 1 ) 3/2  (a:P ' + r , )  sin 0 - a:a -

aK1  2 (a:E2' + r) cos +a:,/i,

aKI' 2v rcSin e.
jb +*)

- 162 -

: m.



APPENDIX C: Stress Intensity Factor in Unloading

Equation (2.25) with K1 defined by (2.24a),

may be explained in the following way.

At the end of a loading regime when

the applied farfield stresses are am.,

the residual stress on the preexisting flaw

is given by

M- amxP - 'r'(G.1)

Here, rm is the maximum shear stress experienced by the flaw during this

loading regime. Backsliding is considered to occur when this residual

stress overcomes the frictional and cohesive resistance of the flaw, i.e.,

* when

r,- :Eo rc - j!a Ij. (G.2)

At the end of a loading regime, we have

K1 - Kj - 2 1)r~sin 9 + a X:a JM1. (G.3)

Therefore, at the onset of backsliding, the equality in (G.2) yields

K( = Ki . (G.4)

The essential difference between (2.24a) and (2.10a) is due to the t.rms

associated with the farfield applied stress, i.e., a:aj(w2/2) and a:a .(wl).

This difference stems from the fact that the computation of the stress

intensity factor in the presence of a gap is for a crack of length 1,

whereas that associated with the force F is for a crack of length 21.
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Because tension cracks grow in the the maximum compressive stress direction,

this difference is quite small. Even for extreme cases, e.g., just after

crack nucleation, I is small and hence this term is very small. We may

therefore use the expression (2.25) and (2.26) with KI defined by (2.24a),

in order to ensure a consistent formulation without loss of accuracy.
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APPENDIX H: Partially Closed Dislocated Crack

We consider the case shown in Fig. B.1. In this case, the integral

equation corresponding to Eq. (B.3) becomes

f o - 2w 1 - V T. (H.1)
-a X2A

If we solve this equation under the condition that all is bounded at x2 - -a

and unbounded at x2 - a, we obtain (e.g., Muskhelishvili, 1953)

B1(x) - 2T 1 + X 2  (H.2)JA -7Ja - X 2

After integration of (B.2), the crack opening displacement is given by

[Ul l(X 2 ) - - - 2T [ a sin-*X+ a - ja 2  
2 (H.3)

a 2H3

The condition at x2 - a yields

a -- 2 - 91 (H.4)

Apparently, this result is reasonable only when T < 0. In our particular

problem,

g, - b sin B + d cos 9, T - a:a. (H.5)

Thus, integration of the crack opening displacement leads to the following

expression for the strain component ell in the local coordinate system:

-2 1 -- f (b sin 8 + d cos 6)2. (H.6)

The strain component ' 12 requires no modification when we assume no

friction on tension cracks. Considering the contribution by the farfield

stresses as well as the dislocation array, we obtain
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f f-(b cos 8 - d sin 8) + f ir2a#V(.7
12 28p MH.7)

in the local coordinate system. The transformation to the global coordinate

system is done by Eq. (B.13). In the global coordinate system, we hence

have

f (b sine0 + d cos0)'ic27r 1 -w(au:a)

" f - ( b cos 8 - d sin O)fi (H.8)
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Table 1: Instantaneous comipliance, at various loading and unloading states.

C, /(r./ D1 11 1  D112 2  D22 22  211 22

0*0 0.375 -0.125 j0.375 -0.125 0.25
3.68 1.42 0.421 -0.212 0.462 -0.171 0.257
7.46 3.21 0.483 -0.652 3.775 -0.510 0.331

l13.1** 5.99 0.391 -0.391 1;27.6 -1.18 2.368
5.28t 1 2.95 0.472 -1.03 14.2 -0.648 2.657

*Initial elastic loading
*Upon unloading
tUnloading with backsliding
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